22 research outputs found

    Recognition of compound characters in Kannada language

    Get PDF
    Recognition of degraded printed compound Kannada characters is a challenging research problem. It has been verified experimentally that noise removal is an essential preprocessing step. Proposed are two methods for degraded Kannada character recognition problem. Method 1 is conventionally used histogram of oriented gradients (HOG) feature extraction for character recognition problem. Extracted features are transformed and reduced using principal component analysis (PCA) and classification performed. Various classifiers are experimented with. Simple compound character classification is satisfactory (more than 98% accuracy) with this method. However, the method does not perform well on other two compound types. Method 2 is deep convolutional neural networks (CNN) model for classification. This outperforms HOG features and classification. The highest classification accuracy is found as 98.8% for simple compound character classification. The performance of deep CNN is far better for other two compound types. Deep CNN turns out to better for pooled character classes

    Development of Features for Recognition of Handwritten Odia Characters

    Get PDF
    In this thesis, we propose four different schemes for recognition of handwritten atomic Odia characters which includes forty seven alphabets and ten numerals. Odia is the mother tongue of the state of Odisha in the republic of India. Optical character recognition (OCR) for many languages is quite matured and OCR systems are already available in industry standard but, for the Odia language OCR is still a challenging task. Further, the features described for other languages can’t be directly utilized for Odia character recognition for both printed and handwritten text. Thus, the prime thrust has been made to propose features and utilize a classifier to derive a significant recognition accuracy. Due to the non-availability of a handwritten Odia database for validation of the proposed schemes, we have collected samples from individuals to generate a database of large size through a digital note maker. The database consists of a total samples of 17, 100 (150 × 2 × 57) collected from 150 individuals at two different times for 57 characters. This database has been named Odia handwritten character set version 1.0 (OHCS v1.0) and is made available in http://nitrkl.ac.in/Academic/Academic_Centers/Centre_For_Computer_Vision.aspx for the use of researchers. The first scheme divides the contour of each character into thirty segments. Taking the centroid of the character as base point, three primary features length, angle, and chord-to-arc-ratio are extracted from each segment. Thus, there are 30 feature values for each primary attribute and a total of 90 feature points. A back propagation neural network has been employed for the recognition and performance comparisons are made with competent schemes. The second contribution falls in the line of feature reduction of the primary features derived in the earlier contribution. A fuzzy inference system has been employed to generate an aggregated feature vector of size 30 from 90 feature points which represent the most significant features for each character. For recognition, a six-state hidden Markov model (HMM) is employed for each character and as a consequence we have fifty-seven ergodic HMMs with six-states each. An accuracy of 84.5% has been achieved on our dataset. The third contribution involves selection of evidence which are the most informative local shape contour features. A dedicated distance metric namely, far_count is used in computation of the information gain values for possible segments of different lengths that are extracted from whole shape contour of a character. The segment, with highest information gain value is treated as the evidence and mapped to the corresponding class. An evidence dictionary is developed out of these evidence from all classes of characters and is used for testing purpose. An overall testing accuracy rate of 88% is obtained. The final contribution deals with the development of a hybrid feature derived from discrete wavelet transform (DWT) and discrete cosine transform (DCT). Experimentally it has been observed that a 3-level DWT decomposition with 72 DCT coefficients from each high-frequency components as features gives a testing accuracy of 86% in a neural classifier. The suggested features are studied in isolation and extensive simulations has been carried out along with other existing schemes using the same data set. Further, to study generalization behavior of proposed schemes, they are applied on English and Bangla handwritten datasets. The performance parameters like recognition rate and misclassification rate are computed and compared. Further, as we progress from one contribution to the other, the proposed scheme is compared with the earlier proposed schemes

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Handwritten Digit Recognition and Classification Using Machine Learning

    Get PDF
    In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy

    Novel Heuristic Recurrent Neural Network Framework to Handle Automatic Telugu Text Categorization from Handwritten Text Image

    Get PDF
    In the near future, the digitization and processing of the current paper documents describe efficient role in the creation of a paperless environment. Deep learning techniques for handwritten recognition have been extensively studied by various researchers. Deep neural networks can be trained quickly thanks to a lot of data and other algorithmic advancements. Various methods for extracting text from handwritten manuscripts have been developed in literature. To extract features from written Telugu Text image having some other neural network approaches like convolution neural network (CNN), recurrent neural networks (RNN), long short-term memory (LSTM). Different deep learning related approaches are widely used to identification of handwritten Telugu Text; various techniques are used in literature for the identification of Telugu Text from documents. For automatic identification of Telugu written script efficiently to eliminate noise and other semantic features present in Telugu Text, in this paper, proposes Novel Heuristic Advanced Neural Network based Telugu Text Categorization Model (NHANNTCM) based on sequence-to-sequence feature extraction procedure. Proposed approach extracts the features using RNN and then represents Telugu Text in sequence-to-sequence format for the identification advanced neural network performs both encoding and decoding to identify and explore visual features from sequence of Telugu Text in input data. The classification accuracy rates for Telugu words, Telugu numerals, Telugu characters, Telugu sentences, and the corresponding Telugu sentences were 99.66%, 93.63%, 91.36%, 99.05%, and 97.73% consequently. Experimental evaluation describe extracted with revealed which are textured i.e. TENG shown considerable operations in applications such as private information protection, security defense, and personal handwriting signature identification

    Multi-script handwritten character recognition:Using feature descriptors and machine learning

    Get PDF

    Automated framework for robust content-based verification of print-scan degraded text documents

    Get PDF
    Fraudulent documents frequently cause severe financial damages and impose security breaches to civil and government organizations. The rapid advances in technology and the widespread availability of personal computers has not reduced the use of printed documents. While digital documents can be verified by many robust and secure methods such as digital signatures and digital watermarks, verification of printed documents still relies on manual inspection of embedded physical security mechanisms.The objective of this thesis is to propose an efficient automated framework for robust content-based verification of printed documents. The principal issue is to achieve robustness with respect to the degradations and increased levels of noise that occur from multiple cycles of printing and scanning. It is shown that classic OCR systems fail under such conditions, moreover OCR systems typically rely heavily on the use of high level linguistic structures to improve recognition rates. However inferring knowledge about the contents of the document image from a-priori statistics is contrary to the nature of document verification. Instead a system is proposed that utilizes specific knowledge of the document to perform highly accurate content verification based on a Print-Scan degradation model and character shape recognition. Such specific knowledge of the document is a reasonable choice for the verification domain since the document contents are already known in order to verify them.The system analyses digital multi font PDF documents to generate a descriptive summary of the document, referred to as \Document Description Map" (DDM). The DDM is later used for verifying the content of printed and scanned copies of the original documents. The system utilizes 2-D Discrete Cosine Transform based features and an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan degradation model. The system is tested with varying degrees of Print-Scan Channel corruption on a variety of documents with corruption produced by repetitive printing and scanning of the test documents. Results show the approach achieves excellent accuracy and robustness despite the high level of noise
    corecore