23 research outputs found

    A Parametrization-Based Surface Reconstruction System for Triangular Mesh Simplification with Application to Large Scale Scenes

    Full text link
    The laser scanner is nowadays widely used to capture the geometry of art, animation maquettes, or large architectural, industrial, and land form models. It thus poses specific problems depending on the model scale. This thesis provides a solution for simplification of triangulated data and for surface reconstruction of large data sets, where feature edges provide an obvious segmentation structure. It also explores a new method for model segmentation, with the goal of applying multiresolution techniques to data sets characterized by curvy areas and the lack of clear demarcation features. The preliminary stage of surface segmentation, which takes as input single or multiple scan data files, generates surface patches which are processed independently. The surface components are mapped onto a two-dimensional domain with boundary constraints, using a novel parametrization weight coefficient. This stage generates valid parameter domain points, which can be fed as arguments to parametric modeling functions or surface approximation schemes. On this domain, our approach explores two types of remeshing. First, we generate points in a regular grid pattern, achieving multiresolution through a flexible grid step, which nevertheless is designed to produce a globally uniform resampling aspect. In this case, for reconstruction, we attempt to solve the open problem of border reconciliation across adjacent domains by retriangulating the border gap between the grid and the fixed irregular border. Alternatively, we straighten the domain borders in the parameter domain and coarsely triangulate the resulting simplified polygons, resampling the base domain triangles in a 1-4 subdivision pattern, achieving multiresolution from the number of subdivision steps. For mesh reconstruction, we use a linear interpolation method based on the original mesh triangles as control points on local planes, using a saved triangle correspondence between the original mesh and the parametric domain. We also use a region-wide approximation method, applied to the parameter grid points, which first generates data-trained control points, and then uses them to obtain the reconstruction values at the resamples. In the grid resampling scheme, due to the border constraints, the reassembly of the segmented, sequentially processed data sets is seamless. In the subdivision scheme, we align adjacent border fragments in the parameter space, and use a region-to-fragment map to achieve the same border reconstruction across two neighboring components. We successfully process data sets up to 1,000,000 points in one pass of our program, and are capable of assembling larger scenes from sequential runs. Our program consists of a single run, without intermediate storage. Where we process large input data files, we fragment the input using a nested application of our segmentation algorithm to reduce the size of the input scenes, and our pipeline reassembles the reconstruction output from multiple data files into a unique view

    BEST : Bézier-Enhanced Shell Triangle : a new rotation-free thin shell finite element

    Get PDF
    A new thin shell finite element is presented. This new element doesn’ t have rotational degrees of freedom. Instead, in order to overcome the C1 continuity requirement across elements, the author resorts to enhance the geometric description of the flat triangles of a mesh made out of linear triangles, by means of Bernstein polynomials and triangular Bernstein-Bézier patches. The author estimates the surface normals at the nodes of a mesh of triangles, in order to use them to define the Bernstein-Bézier patches. Ubach, Estruch and García-Espinosa performed a comprehensive statistical comparison of different weighting factors. The conclusion of that work is that the inverse of the area of the circumscribed circle to the triangle and the internal angle of the triangle at the node considered, should be used as weighting factor. Using this new weighting factor, we reduce by about 10% the root mean square error in the estimation of normals of randomly generated surfaces with respect to the previous best weighting factor found in the literature. The author uses the information of the normal vectors at the nodes and the triangular Bernstein-Bézier patches to build cubic Bézier triangles. These cubic Bézier triangles are surface interpolants; C1 continuous at the nodes and C0 continuous across the edges. Owing to this approach, the new element is called Bézier-enhanced shell triangle (BEST). The BEST element takes advantage of all the nodes’ connectivities in each triangle of the mesh. The computation of the normal vectors at the nodes doesn’ t depend on the number of triangles surrounding each node of the mesh. The BEST element is independent from the mesh topology. A new paradigm is presented consisting on the reconstruction of the geometry of a cubic triangular element. This geometric reconstruction exploits the properties of cubic B-spline functions (cubic Bézier triangle). This way, the author builds a conforming continuum-based shell finite element. A cubic Bézier triangle has 30 parameters (3 coordinates for each of the 10 control points). Therefore it needs to apply 30 independent conditions. 15 of these conditions are given directly by the positions of the 3 vertices of the triangle and the orientations of the normal vectors at the 3 vertices. 8 of the remaining conditions are imposed introducing energy minimization considerations. These energy minimization considerations serve also to define a well-posed element. The author defines 3 different reduced problems for the 3 different shell deformation modes: bending deformation, membrane (in-plane extension) deformation and in-plane shear (drilling rotation) deformation. The only degrees of freedom of the BEST element are the vertices’ coordinates (9 variables). The remaining 21 parameters are solved internally. In order to fix the values of these 21 internal parameters, each BEST element solves 9 systems of linear equations of rank 3. The BEST element is successfully applied to the analysis of thin shells in linear and geometrically non-linear regimes using an implicit method. The non-linearity is solved using a Total Lagrangian formulation. The author succeeds at pre-integrating through-the-thickness efficiently and accurately. The through-the-thickness integrals are evaluated just once: at the reference configuration. There are just 14 through-the-thickness scalar integrals to perform for each Gauss point. The numerical examples results show that the BEST element has the potential to achieve cubic convergence. Although they also cast doubts on the possibility of reproducing this result for a wide range of problems. For in-plane shear dominated problems, the formulation used in this thesis only achieves linear convergence. For membrane oriented tests with curvature, the convergence is quadratic. The BEST element exhibits membrane locking behavior. The author suggests exploiting further the drilling rotations kinematics in order to solve membrane locking.Se presenta un nuevo elemento finito de lámina delgada. Este nuevo elemento no usa rotaciones como grados de libertad. En su lugar, para sortear el requisito de mantener continuidad C1 entre elementos, el autor mejora la descripción geométrica de los triángulos planos de una malla de triángulos lineales, por medio de polinomios de Bernstein y particiones triangulares de Bernstein-Bézier. Para definir las particiones de Bernstein-Bézier, el autor estima las normales a la superficie en los nodos de una malla de triángulos. Ubach, Estruch y García-Espinosa hicieron una comparación estadística exhaustiva entre distintos factores de ponderación. La conclusión de dicho trabajo conduce a usar como factor de ponderación: el inverso del área de la circunferencia circunscrita al triángulo y el ángulo interno del triángulo en el nodo considerado. Con este nuevo factor de ponderación, se reduce en aproximadamente un 10% el error medio cuadrático cometido en la estimación de las normales de superficies generadas aleatoriamente, respecto del mejor factor usado previamente en la literatura. Con la información de los vectores normales en los nodos, el autor construye triángulos cúbicos de Bézier. Estos triángulos cúbicos de Bézier interpolan la superficie; con continuidad C1 en los nodos y C0 en las aristas. En virtud a este planteamiento, el nuevo elemento recibe el nombre de BEST. El elemento BEST aprovecha todas las conectividades nodales de cada triángulo de la malla. El número de triángulos que rodean cada nodo de la malla no afecta al cálculo de los vectores normales. El elemento BEST es independiente de la topología de la malla. Se propone un nuevo paradigma que consiste en reconstruir la geometría de un elemento triangular cúbico. Esta reconstrucción geométrica aprovecha las propiedades de las funciones cúbicas B-spline (triángulo cúbico de Bézier). Así, el autor crea un elemento de lámina conforme basado en el continuo. Un triángulo cúbico de Bézier tiene 30 parámetros (3 coordenadas para cada uno de los 10 puntos de control). Es necesario aplicar 30 condiciones independientes. 15 de estas condiciones se deducen de la posición de los 3 vértices del triángulo y de los vectores normales en los 3 vértices. De las otras 15 condiciones, 8 se obtienen a partir de criterios de minimización de la energía. Estos criterios de minimización de la energía sirven para definir un elemento bien planteado. El autor desarrolla 3 problemas reducidos para los 3 modos de deformación de la lámina: deformación de flexión, de membrana (extensión en el plano) y de cortante en el plano (rotación de taladro). Los únicos grados de libertad del elemento BEST son las posiciones de los vértices (9 variables). Los otros 21 parámetros se resuelven internamente. Para obtener estos 21 parámetros internos, hay que resolver 9 sistemas de ecuaciones lineales de rango 3 para cada elemento BEST. Se ha aplicado el elemento BEST con éxito al cálculo de láminas delgadas en régimen lineal y geométricamente no-lineal con un método implícito. La no-linealidad se plantea con una formulación Lagrangiana total. Se demuestra cómo pre-integrar en el espesor de manera eficiente y precisa. Solo es preciso evaluar las integrales en el espesor una vez: en la configuración de referencia. Solo hay 14 integrales escalares en el espesor para cada punto de Gauss. Los ejemplos numéricos muestran que el elemento BEST tiene potencial para converger cúbicamente. Pero también existen dudas sobre la capacidad de reproducir de manera consistente este resultado en un amplio rango de problemas. En problemas dominados por la deformación de cortante en el plano, la formulación utilizada en esta tesis solo alcanza convergencia lineal. En ejemplos orientados a la deformación de membrana que incluyen curvatura, la convergencia es cuadrática. El elemento BEST sufre de bloqueo por membrana. El autor sugiere desarrollar más profundamente la cinemática de las rotaciones de taladro para resolver el bloqueo por membrana.Es presenta un nou element finit de làmina prima. Aquest nou element no fa servir rotacions com a graus de llibertat. Enlloc d'això, per esquivar el requisit de mantenir continuïtat C1 entre els elements, l'autor millora la descripció geomètrica dels triangles plans d'una malla de triangles lineals, mitjançant polinomis de Bernstein i particions triangulars de Bernstein-Bézier.Per definir les particions de Bernstein-Bézier, l'autor estima les normals a la superfície en els nodes d'una malla de triangles. Ubach, Estruch i García-Espinosa varen fer una comparació estadística exhaustiva entre diferents factors de ponderació. La conclusió d'aquest treball condueix a fer servir com a factor de ponderació: l'invers de l'àrea de la circumferència circumscrita al triangle i l'angle intern del triangle en el node considerat. Amb aquest nou factor de ponderació, es redueix aproximadament en un 10% l'error quadràtic mig comès en l'estimació de les normals de superfícies generades aleatòriament, respecte del millor factor usat prèviament a la literatura.Amb la informació dels vectors normals en els nodes, l'autor construeix triangles cúbics de Bézier. Aquests triangles cúbics de Bézier interpolen la superfície; amb continuïtat C1 als nodes i C0 a les arestes. En virtut d'aquest plantejament, el nou element rep el nom de BEST (Bézier-enhanced shell triangle).L'element BEST aprofita totes les connectivitats nodals de cada triangle de la malla. El nombre de triangles que envolten cada node de la malla no afecta al càlcul dels vectors normals. L'element BEST és independent de la topologia de la malla.Es proposa un nou paradigma que consisteix en reconstruir la geometria d'un element triangular cúbic. Aquesta reconstrucció geomètrica aprofita les propietats de les funcions cúbiques B-spline (triangle cúbic de Bézier). D'aquesta manera l'autor crea un element de làmina que és conforme i basat en el continu.Un triangle cúbic de Bézier té 30 paràmetres (3 coordenades per cadascun dels 10 punts de control). Cal aplicar 30 condicions independents. 15 d'aquestes condicions es dedueixen de la posició dels 3 vèrtexs del triangle i dels vectors normals en els 3 vèrtexs.De les 15 condicions restants, 8 s'obtenen a partir de criteris de minimització de l'energia. Aquests criteris de minimització de l'energia serveixen per definir un element ben plantejat. L'autor desenvolupa 3 problemes reduïts per als 3 modes de deformació de la làmina: deformació de flexió, de membrana (extensió en el pla) i de tallant en el pla (rotació de barrina).Els únics graus de llibertat de l'element BEST són les posicions dels vèrtexs (9 variables). Els altres 21 paràmetres es resolen internament. Per obtenir aquests 21 paràmetres interns, cal resoldre 9 sistemes d'equacions lineals de rang 3 per cada element BEST.S'ha aplicat l'element BEST amb èxit al càlcul de làmines primes en règim lineal i geomètricament no-lineal fent servir un mètode implícit. La no-linealitat es planteja amb una formulació Lagrangiana total. Es demostra com es pot pre-integrar a través del gruix de manera eficient i precisa. Només cal avaluar les integrals a través del gruix un cop: a la configuració de referència. Només hi ha 14 integrals escalars a través del gruix per a cada punt de Gauss. Els exemples numèrics mostren que l'element BEST té potencial per convergir cúbicament. Però també hi ha dubtes de que aquest resultat es pugui reproduir de manera consistent per un ventall ampli de problemes. En problemes dominats per la deformació de tallant en el pla, la formulació emprada en aquesta tesi només assoleix convergència lineal. En exemples orientats a la deformació de membrana que incloguin curvatura, la convergència és quadràtica. L'element BEST pateix de bloqueig per membrana. L'autor suggereix desenvolupar en més profunditat la cinemàtica de les rotacions de barrina per resoldre el bloqueig per membrana

    Modelado jerárquico de objetos 3D con superficies de subdivisión

    Get PDF
    Las SSs (Superficies de Subdivisión) son un potente paradigma de modelado de objetos 3D (tridimensionales) que establece un puente entre los dos enfoques tradicionales a la aproximación de superficies, basados en mallas poligonales y de parches alabeados, que conllevan problemas uno y otro. Los esquemas de subdivisión permiten definir una superficie suave (a tramos), como las más frecuentes en la práctica, como el límite de un proceso recursivo de refinamiento de una malla de control burda, que puede ser descrita muy compactamente. Además, la recursividad inherente a las SSs establece naturalmente una relación de anidamiento piramidal entre las mallas / NDs (Niveles de Detalle) generadas/os sucesivamente, por lo que las SSs se prestan extraordinariamente al AMRO (Análisis Multiresolución mediante Ondículas) de superficies, que tiene aplicaciones prácticas inmediatas e interesantísimas, como la codificación y la edición jerárquicas de modelos 3D. Empezamos describiendo los vínculos entre las tres áreas que han servido de base a nuestro trabajo (SSs, extracción automática de NDs y AMRO) para explicar como encajan estas tres piezas del puzzle del modelado jerárquico de objetos de 3D con SSs. El AMRO consiste en descomponer una función en una versión burda suya y un conjunto de refinamientos aditivos anidados jerárquicamente llamados "coeficientes ondiculares". La teoría clásica de ondículas estudia las señales clásicas nD: las definidas sobre dominios paramétricos homeomorfos a R" o (0,1)n como el audio (n=1), las imágenes (n=2) o el vídeo (n=3). En topologías menos triviales, como las variedades 2D) (superficies en el espacio 3D), el AMRO no es tan obvio, pero sigue siendo posible si se enfoca desde la perspectiva de las SSs. Basta con partir de una malla burda que aproxime a un bajo ND la superficie considerada, subdividirla recursivamente y, al hacerlo, ir añadiendo los coeficientes ondiculares, que son los detalles 3D necesarios para obtener aproximaciones más y más finas a la superficie original. Pasamos después a las aplicaciones prácticas que constituyen nuestros principal desarrollo original y, en particular, presentamos una técnica de codificación jerárquica de modelos 3D basada en SSs, que actúa sobre los detalles 3D mencionados: los expresa en un referencial normal loscal; los organiza según una estructura jerárquica basada en facetas; los cuantifica dedicando menos bits a sus componentes tangenciales, menos energéticas, y los "escalariza"; y los codifica dinalmente gracias a una técnica similar al SPIHT (Set Partitioning In Hierarchical Tress) de Said y Pearlman. El resultado es un código completamente embebido y al menos dos veces más compacto, para superficies mayormente suaves, que los obtenidos con técnicas de codificación progresiva de mallas 3D publicadas previamente, en las que además los NDs no están anidados piramidalmente. Finalmente, describimos varios métodos auxiliares que hemos desarrollado, mejorando técnicas previas y creando otras propias, ya que una solución completa al modelado de objetos 3D con SSs requiere resolver otros dos problemas. El primero es la extracción de una malla base (triangular, en nuestro caso) de la superficie original, habitualmente dada por una malla triangular fina con conectividad arbitraria. El segundo es la generación de un remallado recursivo con conectividad de subdivisión de la malla original/objetivo mediante un refinamiento recursivo de la malla base, calculando así los detalles 3D necesarios para corregir las posiciones predichas por la subdivisión para nuevos vértices

    On a method for simulation-based wind turbine blade design

    Get PDF
    Wind turbines are an important means for the production of renewable energy. Wind conditions vary from one site to another and the design of a horizontal axis wind turbine depends on these local wind conditions. One of the important aspects of the design of a wind turbine concerns the aerodynamic shape of the rotor blades.\ud The research presented in this thesis focusses on the development of a computational method that can be used for solving aerodynamic shape optimization problems. A gradient-based optimization method is employed for this purpose. For a feasible optimization method, the gradients must be computed efficiently. This goal is achieved using the discrete adjoint equation method, which is independent of the number of design variables. Robust and accurate evaluation of partial derivatives is achieved by means of the dual number method. The flow domain is discretized using composite overset grids and the compressible Euler equations are used to model the flow.\ud The optimization method has been used for the optimization of a swept wing for both sub-critical and transonic flow conditions. The results show that the method is robust and can be used to efficiently solve aerodynamic shape optimization problems. Moreover, using the method for solving aerodynamic shape optimization problems involving a wind turbine rotor blade has been discussed, regarding possible objective functions for the present optimization framework. Some issues arose solving the optimization problem for a wind turbine blade. These issues have been identified and suggestions are put forward for resolving them

    Generative Mesh Modeling

    Get PDF
    Generative Modeling is an alternative approach for the description of three-dimensional shape. The basic idea is to represent a model not as usual by an agglomeration of geometric primitives (triangles, point clouds, NURBS patches), but by functions. The paradigm change from objects to operations allows for a procedural representation of procedural shapes, such as most man-made objects. Instead of storing only the result of a 3D construction, the construction process itself is stored in a model file. The generative approach opens truly new perspectives in many ways, among others also for 3D knowledge management. It permits for instance to resort to a repository of already solved modeling problems, in order to re-use this knowledge also in different, slightly varied situations. The construction knowledge can be collected in digital libraries containing domain-specific parametric modeling tools. A concrete realization of this approach is a new general description language for 3D models, the "Generative Modeling Language" GML. As a Turing-complete "shape programming language" it is a basis of existing, primitv based 3D model formats. Together with its Runtime engine the GML permits - to store highly complex 3D models in a compact form, - to evaluate the description within fractions of a second, - to adaptively tesselate and to interactively display the model, - and even to change the models high-level parameters at runtime.Die generative Modellierung ist ein alternativer Ansatz zur Beschreibung von dreidimensionaler Form. Zugrunde liegt die Idee, ein Modell nicht wie üblich durch eine Ansammlung geometrischer Primitive (Dreiecke, Punkte, NURBS-Patches) zu beschreiben, sondern durch Funktionen. Der Paradigmenwechsel von Objekten zu Geometrie-erzeugenden Operationen ermöglicht es, prozedurale Modelle auch prozedural zu repräsentieren. Statt das Resultat eines 3D-Konstruktionsprozesses zu speichern, kann so der Konstruktionsprozess selber repräsentiert werden. Der generative Ansatz eröffnet unter anderem gänzlich neue Perspektiven für das Wissensmanagement im 3D-Bereich. Er ermöglicht etwa, auf einen Fundus bereits gelöster Konstruktions-Aufgaben zurückzugreifen, um sie in ähnlichen, aber leicht variierten Situationen wiederverwenden zu können. Das Konstruktions-Wissen kann dazu in Form von Bibliotheken parametrisierter, Domänen-spezifischer Modellier-Werkzeuge gesammelt werden. Konkret wird dazu eine neue allgemeine Modell-Beschreibungs-Sprache vorgeschlagen, die "Generative Modeling Language" GML. Als Turing-mächtige "Programmiersprache für Form" stellt sie eine echte Verallgemeinerung existierender Primitiv-basierter 3D-Modellformate dar. Zusammen mit ihrer Runtime-Engine erlaubt die GML, - hochkomplexe 3D-Objekte extrem kompakt zu beschreiben, - die Beschreibung innerhalb von Sekundenbruchteilen auszuwerten, - das Modell adaptiv darzustellen und interaktiv zu betrachten, - und die Modell-Parameter interaktiv zu verändern

    Annales Mathematicae et Informaticae (47.)

    Get PDF

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Annales Mathematicae et Informaticae 2017

    Get PDF

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Étude de l'utilisation d'éléments finis quadratiques dans le cadre de l'application de la méthode du mouvement normal

    Get PDF
    L'objectif de cette recherche est d'intégrer une méthode d'optimisation de structures au processus de Conception Assistée par Ordinateur (CAO) avec un maillage quadratique. La méthode utilisée est la méthode du mouvement normal (MMN) qui vise à uniformiser la valeur des contraintes sur la frontière d'une structure en déplaçant de manière itérative les points de design dans la direction normale. La méthode a été implémentée précédemment dans le Modèle de Topologie Unifié (MTU) de l'Équipe de Recherche en Intégration CAO-Calcul (ERlCCA) de l'Université du Québec à Trois-Rivières avec un maillage linéaire. Néanmoins, pour les structures courbes, les éléments linéaires ne permettent pas d'avoir une bonne approximation de la géométrie contrairement à des éléments curvilignes. La MMN est implémentée avec un maillage quadratique et appliquée sur un tube en porte-à-faux définis avec des zones de design et de non design. La méthode conduit à l'amélioration de la répartition des contraintes et une diminution de la contrainte moyenne dans le tube, mais conduit aussi à l'apparition d'un déplacement trop important à la jonction entre la zone de design et la zone de non design près de l'encastrement. Pour cela, plusieurs méthodes sont utilisées pour contrôler le déplacement des nœuds. Une méthode de lissage (lissage Taubin), filtres (filtrage des déplacements) et la MMN modifiée. Les différents contrôles utilisés permettent d'avoir une forme valide géométriquement. Finalement, la MMN avec et sans contrôle est appliquée à plusieurs structures tubulaires et une reconstruction géométrique des résultats d'optimisation d'un tube en porte-à-faux (sans zone de non-design) est effectuée afm de valider les résultats de la méthode. L'objectif de cette recherche est d'intégrer une méthode d'optimisation de structuresau processus de Conception Assistée par Ordinateur (CAO) avec un maillagequadratique. La méthode utilisée est la méthode du mouvement normal (MMN) quivise à uniformiser la valeur des contraintes sur la frontière d'une structure en déplaçantde manière itérative les points de design dans la direction normale. La méthode a étéimplémentée précédemment dans le Modèle de Topologie Unifié (MTU) de l'Équipede Recherche en Intégration CAO-Calcul (ERlCCA) de l'Université du Québec àTrois-Rivières avec un maillage linéaire. Néanmoins, pour les structures courbes, leséléments linéaires ne permettent pas d'avoir une bonne approximation de la géométriecontrairement à des éléments curvilignes. La MMN est implémentée avec un maillagequadratique et appliquée sur un tube en porte-à-faux définis avec des zones de designet de non design. La méthode conduit à l'amélioration de la répartition des contrainteset une diminution de la contrainte moyenne dans le tube, mais conduit aussi àl'apparition d'un déplacement trop important à la jonction entre la zone de design etla zone de non design près de l'encastrement. Pour cela, plusieurs méthodes sontutilisées pour contrôler le déplacement des nœuds. Une méthode de lissage (lissageTaubin), filtres (filtrage des déplacements) et la MMN modifiée. Les différentscontrôles utilisés permettent d'avoir une forme valide géométriquement. Finalement,la MMN avec et sans contrôle est appliquée à plusieurs structures tubulaires et unereconstruction géométrique des résultats d'optimisation d'un tube en porte-à-faux(sans zone de non-design) est effectuée afm de valider les résultats de la méthode
    corecore