87,107 research outputs found

    Shape classification through structured learning of matching measures

    Get PDF
    Many traditional methods for shape classification involve establishing point correspondences between shapes to produce matching scores, which are in turn used as similarity measures for classification. Learning techniques have been applied only in the second stage of this process, after the matching scores have been obtained. In this paper, instead of simply taking for granted the scores obtained by matching and then learning a classifier, we learn the matching scores themselves so as to produce shape similarity scores that minimize the classification loss. The solution is based on a max-margin formulation in the structured prediction setting. Experiments in shape databases reveal that such an integrated learning algorithm substantially improves on existing methods

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Shape matching and clustering

    Get PDF
    Generalising knowledge and matching patterns is a basic human trait in re-using past experiences. We often cluster (group) knowledge of similar attributes as a process of learning and or aid to manage the complexity and re-use of experiential knowledge [1, 2]. In conceptual design, an ill-defined shape may be recognised as more than one type. Resulting in shapes possibly being classified differently when different criteria are applied. This paper outlines the work being carried out to develop a new technique for shape clustering. It highlights the current methods for analysing shapes found in computer aided sketching systems, before a method is proposed that addresses shape clustering and pattern matching. Clustering for vague geometric models and multiple viewpoint support are explored

    Spatially Aware Dictionary Learning and Coding for Fossil Pollen Identification

    Full text link
    We propose a robust approach for performing automatic species-level recognition of fossil pollen grains in microscopy images that exploits both global shape and local texture characteristics in a patch-based matching methodology. We introduce a novel criteria for selecting meaningful and discriminative exemplar patches. We optimize this function during training using a greedy submodular function optimization framework that gives a near-optimal solution with bounded approximation error. We use these selected exemplars as a dictionary basis and propose a spatially-aware sparse coding method to match testing images for identification while maintaining global shape correspondence. To accelerate the coding process for fast matching, we introduce a relaxed form that uses spatially-aware soft-thresholding during coding. Finally, we carry out an experimental study that demonstrates the effectiveness and efficiency of our exemplar selection and classification mechanisms, achieving 86.13%86.13\% accuracy on a difficult fine-grained species classification task distinguishing three types of fossil spruce pollen.Comment: CVMI 201

    A Survey on Joint Object Detection and Pose Estimation using Monocular Vision

    Get PDF
    In this survey we present a complete landscape of joint object detection and pose estimation methods that use monocular vision. Descriptions of traditional approaches that involve descriptors or models and various estimation methods have been provided. These descriptors or models include chordiograms, shape-aware deformable parts model, bag of boundaries, distance transform templates, natural 3D markers and facet features whereas the estimation methods include iterative clustering estimation, probabilistic networks and iterative genetic matching. Hybrid approaches that use handcrafted feature extraction followed by estimation by deep learning methods have been outlined. We have investigated and compared, wherever possible, pure deep learning based approaches (single stage and multi stage) for this problem. Comprehensive details of the various accuracy measures and metrics have been illustrated. For the purpose of giving a clear overview, the characteristics of relevant datasets are discussed. The trends that prevailed from the infancy of this problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and Pattern Recognition (CCVPR) 201

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • …
    corecore