28,785 research outputs found

    Classification of Fish Species with Image Data Using K-Nearest Neighbor

    Get PDF
    Abstract— Classification is a technique that many of us encounter in everyday life, classification science is also growing and being applied to various types of data and cases in everyday life, in computer science classification has been developed to facilitate human work, one example of its application is to classify fish species in the world, the number of fish species in the world is very much so that there are still many people who are sometimes confused to distinguish them, therefore in this study a study will be conducted to classify fish species using the K-Nearest Neighbor Method. 4 types of fish, all data totaling 160 data. The purpose of this study was to test the K-Nearest Neighbor method for classifying fish species based on color, texture, and shape features. Based on the test results, the accuracy value of the truth is obtained using the value of K = 7 with a percentage of the truth of 77.50%, the second-highest accuracy value is the value of K = 10, namely 76.88%. Based on the results of this study, it can be concluded that the K-Nearest Neighbor method has a good enough ability to classify, but it can be done by adding variables or adding more amount of data, and using other types of fish

    Underwater Live Fish Recognition Using a Balance-Guaranteed Optimized Tree

    Get PDF
    Abstract. Live fish recognition in the open sea is a challenging multiclass classification task. We propose a novel method to recognize fish in an unrestricted natural environment recorded by underwater cameras. This method extracts 66 types of features, which are a combination of color, shape and texture properties from different parts of the fish and reduce the feature dimensions with forward sequential feature selection (FSFS) procedure. The selected features of the FSFS are used by an SVM. We present a Balance-Guaranteed Optimized Tree (BGOT) to control the error accumulation in hierarchical classification and, therefore, achieve better performance. A BGOT of 10 fish species is automatically constructed using the inter-class similarities and a heuristic method. The proposed BGOT-based hierarchical classification method achieves about 4 % better accuracy compared to state-of-the-art techniques on a live fish image dataset.

    A computer vision approach to classification of birds in flight from video sequences

    Get PDF
    Bird populations are an important bio-indicator; so collecting reliable data is useful for ecologists helping conserve and manage fragile ecosystems. However, existing manual monitoring methods are labour-intensive, time-consuming, and error-prone. The aim of our work is to develop a reliable system, capable of automatically classifying individual bird species in flight from videos. This is challenging, but appropriate for use in the field, since there is often a requirement to identify in flight, rather than when stationary. We present our work in progress, which uses combined appearance and motion features to classify and present experimental results across seven species using Normal Bayes classifier with majority voting and achieving a classification rate of 86%

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    Automated, objective texture segmentation of multibeam echosounder data - Seafloor survey and substrate maps from James Island to Ozette Lake, Washington Outer Coast

    Get PDF
    Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.
    • 

    corecore