1,545 research outputs found

    A Survey of Methods for Volumetric Scene Reconstruction from Photographs

    Get PDF
    Scene reconstruction, the task of generating a 3D model of a scene given multiple 2D photographs taken of the scene, is an old and difficult problem in computer vision. Since its introduction, scene reconstruction has found application in many fields, including robotics, virtual reality, and entertainment. Volumetric models are a natural choice for scene reconstruction. Three broad classes of volumetric reconstruction techniques have been developed based on geometric intersections, color consistency, and pair-wise matching. Some of these techniques have spawned a number of variations and undergone considerable refinement. This paper is a survey of techniques for volumetric scene reconstruction

    3D Dynamic Scene Reconstruction from Multi-View Image Sequences

    Get PDF
    A confirmation report outlining my PhD research plan is presented. The PhD research topic is 3D dynamic scene reconstruction from multiple view image sequences. Chapter 1 describes the motivation and research aims. An overview of the progress in the past year is included. Chapter 2 is a review of volumetric scene reconstruction techniques and Chapter 3 is an in-depth description of my proposed reconstruction method. The theory behind the proposed volumetric scene reconstruction method is also presented, including topics in projective geometry, camera calibration and energy minimization. Chapter 4 presents the research plan and outlines the future work planned for the next two years

    Dynamic voxel carving in tennis based on player localisation using a low cost camera network

    Get PDF
    In this paper, we address the problem of reconstructing 3D volumetric models, illustrating human sporting performance for use in coaching scenarios. We advocate the use of low cost camera networks for acquiring such data, allowing the approach to be feasibly adopted by both amateur and elite level sports athletes. A dynamic voxel carving approach is described, coupled with over-head player tracking and autonomous background subtraction, to automatically produce a 3D reconstruction technique that intelligently uses memory resources. We demonstrate the efficacy of our approach in the context of tennis as a challenging application scenario

    3D Volumetric Reconstruction and Characterization of Objects from Uncalibrated Images

    Get PDF
    Three-dimensional (3D) object reconstruction using only bi-dimensional (2D) images has been a major research topic in Computer Vision. However, it is still a complex problem to solve, when automation, speed and precision are required. In the work presented in this paper, we developed a computational platform with the main purpose of building 3D geometric models from uncalibrated images of objects. Simplicity and automation were our major guidelines to choose volumetric reconstruction methods, such as Generalized Voxel Coloring. This method uses photo-consistency measures to build an accurate 3D geometric model, without imposing any kind of restrictions on the relative motion between the camera used and the object to be reconstructed. Our final goal is to use our computational platform in building and characterize human external anatomical shapes using a single off-the-shelf camera

    The FreeD - A Handheld Digital Milling Device for Craft and Fabrication

    Get PDF
    We present an approach to combine digital fabrication and craft that is focused on a new fabrication experience. The FreeD is a hand-held, digitally controlled, milling device. It is guided and monitored by a computer while still preserving gestural freedom. The computer intervenes only when the milling bit approaches the 3D model, which was designed beforehand, either by slowing down the spindle's speed or by drawing back the shaft. The rest of the time it allows complete freedom, allowing the user to manipulate and shape the work in any creative way. We believe The FreeD will enable a designer to move in between the straight boundaries of established CAD systems and the free expression of handcraft

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware

    City of Dublin, Municipal Technical Schools, Kevin Street ; Prospectus, 1911 - 1912

    Get PDF
    • 

    corecore