11 research outputs found

    Shape Abnormalities of the Caudate Nucleus Correlate with Poorer Gait and Balance: Results from a Subset of the LADIS Study

    Get PDF
    Functional deficits seen in several neurodegenerative disorders have been linked with dysfunction in fronto-striatal circuits and with associated shape alterations in striatal structures. The severity of visible white matter changes (WMC) on MRI has been found to correlate with poorer performance on measures of gait and balance. This study aimed to determine whether striatal volume and shape changes were correlated with gait dysfunction

    Shape abnormalities of the caudate nucleus correlate with poorer gait and balance : results from a subset of the ladis study

    Get PDF
    Objective Functional deficits seen in several neurodegenerative disorders have been linked with dysfunction in frontostriatal circuits and with associated shape alterations in striatal structures. The severity of visible white matter hyperintensities (WMHs) on magnetic resonance imaging has been found to correlate with poorer performance on measures of gait and balance. This study aimed to determine whether striatal volume and shape changes were correlated with gait dysfunction. Methods Magnetic resonance imaging scans and clinical gait/balance data (scores from the Short Physical Performance Battery [SPPB]) were sourced from 66 subjects in the previously published LADIS trial, performed in nondisabled individuals older than age 65 years with WMHs at study entry. Data were obtained at study entry and at 3-year follow-up. Caudate nuclei and putamina were manually traced using a previously published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. Results There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes and performance on the SPPB. Conclusion Disruption in frontostriatal circuits may play a role in mediating poorer physical performance in individuals with WMHs. Striatal volume and shape changes may be suitable biomarkers for functional changes in this population

    Modeling of FUS- and C9ORF72-associated cortical neuropathology using patient-specific induced pluripotent stem cells

    Get PDF
    Amyotrophe Lateralsklerose (ALS) ist eine neurodegenerative Erkrankung, bei welcher speziell erste (kortikospinal) und zweite (spinal) Motorneurone (MN) von Neurodegeneration betroffen sind. Gegenwärtig bleibt ALS eine unheilbare Erkrankung. Der Tod tritt durchschnittlich 2 bis 5 Jahre nach Auftreten der Symptome ein. Circa 90% der Fälle treten sporadisch auf (sALS), während 10% familiär sind (fALS). Es ist von großem Interesse monogenetische Formen der fALS zu untersuchen um zugrundeliegende Pathologien und Mechanismen zu verstehen. Bislang wurden über 20 Gene mit ALS in Verbindung gebracht, einschließlich Fused in sarcoma (FUS) und Chromsosome 9 open reading frame (C9ORF72). Circa 4% der fALS Fälle sind durch dominante Mutationen in FUS verursacht und repräsentieren damit die dritthäufigste Form der fALS in Deutschland. Die G4C2 hexanucleotide repeat expansion (HRE) in C9ORF72 ist die häufigste Ursache für ALS und Frontotemporale Demenz (FTD). ALS Patienten unterscheiden sich erheblich in der Präsentation ihrer klinischen Symptome wie Ausbruchsort, Progressionsrate und Auftreten kognitiver Störungen. Diese Faktoren sind auch stark abhängig von der zugrundeliegenden Mutation in fALS. Ziel dieser Doktorarbeit ist die Modellierung von FUS- und C9ORF72-assozierter ALS in einem krankheits-relevanten in vitro Model von speziell kortikaler Neuropathologie mit Hilfe von Patienten-spezifischen iPSZs. Die Hypothese der vorliegenden Arbeit ist das in einer Zelltyp-abhängigen Art und Weise zugrundeliegende Erkrankungsmechanismen in kortikalen vs. spinalen Neuronen unterschiedlich betroffen sind. Humane iPSZ, generiert von gesunden Kontrollen und ALS Patienten mit FUS oder C9ORF72 Mutation, wurden für die gerichtete kortikale und spinale Differenzierung genutzt. Zusätzlich wurden zwei neue FUS-WT- und FUS-P525L-EGFP-markierte isogene Linien mittels CRISPR/Cas9n Technik generiert. Methoden basierend auf Immunfluoreszenz Färbungen und Lebendzell-Mikroskopie wurden angewendet um Krankheits-relevante Proteine, DNA Schäden und axonale Organell-Mobilität zu analysieren. In diesem Projekt konnte ein deutlicher Zelltyp-abhängiger Effekt auf analysierte Phänotypen beobachtet werden, während ALS-assoziierte Mutationen scheinbar nur geringfügige Effekte zeigten. Dementsprechend wurde ein Zelltyp-abhängiger Anstieg des basalen DNA Schadens in kortikalen Astrozyten vs. Neuronen und spinalen vs. kortikalen Neuronen detektiert. Jedoch konnte in FUS oder C9ORF72 mutierten kortikalen Zellen kein erhöhter DNA Schaden nachgewiesen werden, wie es zuvor in spinalen MN beobachtet wurde. Des Weiteren beeinflussen FUS Mutationen die Rekrutierung von FUS zu DNA-geschädigten Stellen, die Organell-Mobilität und die zytoplasmatische Fehllokalisation des Proteins in Abhängigkeit vom Zelltyp. In kortikalen Neuronen wurde in Bezug auf die Rekrutierung von mutiertem FUS und Organell-Mobilität nur leichte Mutations-abhängige und wesentlich schwächer ausgeprägte Effekte beobachtet als in spinalen MN. Zusammenfassend kann gesagt werden, dass Patienten-spezifische Zellmodelle ein wichtiges Instrument in der ALS Forschung sind und das vor allem Unterschiede zwischen kortikalen und spinalen MN weiter untersucht werden müssen, um zugrundeliegende Krankheits-relevante Mechanismen zu entschlüsseln und wie diese zum Fortschreiten der Erkrankung beitragenAmyotrophic lateral sclerosis (ALS) is a of neurodegenerative diseases, in which neurodegeneration specifically affects upper (corticospinal) and lower (spinal) motor neurons (MNs). At present, ALS remains an incurable disease. Death occurs on average 2 to 5 years after symptom onset. About 90% are sporadic cases (sALS) and 10% are familial cases (fALS). It is of great interest to investigate monogenetic forms causing fALS to understand its underlying disease pathologies and mechanisms. Over 20 genes have been linked to ALS until now, including Fused in sarcoma (FUS) and Chromosome 9 open reading frame 72 (C9ORF72). About 4% of fALS cases are caused by dominant mutations within FUS, representing the third most common fALS form in Germany. The G4C2 hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common cause for ALS and Frontotemporal dementia (FTD). ALS patients differ significantly in their presentation of clinical symptoms, including site of onset, rate of progression, and presence of cognitive dysfunction. Those factors were also shown to highly depend on the underlying mutation in fALS cases. Aim of this thesis work is the modeling of FUS- and C9ORF72-associated ALS in a disease-related in vitro model of particularly cortical neuropathology using patient-derived iPSCs. The hypothesis of the current work is that underlying disease mechanisms do differentially affect cortical vs. spinal neurons and act in a cell type-dependent manner. Human iPSCs derived from healthy controls and ALS patients carrying mutations within FUS or C9ORF72 were used for directed cortical and spinal differentiation. Additionally, two new FUS-WT- and FUS-P525L-EGFP-tagged isogenic iPSC lines were generated by CRISPR/Cas9n gene editing. Immunofluorescence staining and live cell imaging approaches were implemented to analyze disease-associated proteins, DNA damage, and axonal trafficking. Within this project, a clear cell type-dependent effect on analyzed phenotypes was observed, while ALS-associated mutations seemed to have only minor effects. Accordingly, cell type-dependent increased basal DNA damage levels in cortical astrocytes vs. neurons and spinal vs. cortical neurons were detected. However, FUS or C9ORF72 mutant cortical cells do not recapitulate increased DNA damage levels as they have been observed in spinal MNs. Furthermore, FUS mutation affected recruitment to DNA damage sites, axonal trafficking, and cytoplasmic mislocalization differentially, depending on the analyzed cell type. In cortical neurons, recruitment and trafficking of mutant FUS showed only slight mutation-dependent effects and also less pronounced phenotypes than observed in spinal MNs. In conclusion, patient-specific cellular models are an important tool in ALS research and particularly differences between cortical and spinal MNs need to be further investigated to decipher underlying disease mechanisms, the interplay of cell types affected by the disease, and how they participate in disease progression

    The relationships of inflammation with brain structures in older individuals as revealed by multimodal magnetic resonance imaging techniques

    Full text link
    Inflammation plays important roles in ageing and neurodegenerative diseases. Although studies have shown the association of increased inflammatory markers with brain structural and functional degeneration in ageing, the implication for clinical practice is often restricted by the examination of selected inflammatory markers and inconsistent findings across different studies. This Ph.D. thesis aims to examine the impacts of inflammation on ageing brains in community-based older individuals aged 70-90 years, using multimodal MRI data. In order to assess how inflammation associates with ageing brains, I first examined age-related brain structural changes over two years in the study sample. The findings showed widespread atrophy across brain grey (GM) and white matter (WM), which is comparable to previous longitudinal studies in similar age range. Next, all inflammatory markers available to the study sample (n = 11) were examined for their associations with brain structural indices. The results showed that higher macrophage inhibitory cytokine-1 (MIC-1/GDF15) levels were associated with lower GM and WM volumes. The inflammatory markers were then categorised into cytokine, acute phase and vascular factors using principal component analysis. Higher levels of the acute phase factor were associated with heavier WM hyperintensity (WMH) burdens, whereas higher levels of the vascular factor were linked to greater GM and WM atrophy. The relationship of MIC-1/GDF15 levels with brain was then investigated in more details using multimodal MRI data in both cross-sectional and longitudinal settings. The findings indicated that higher MIC-1/GDF15 serum levels were associated with GM and WM deterioration, and decline in WM microstructural integrity. Over two years, individuals with more increase in MIC-1/GDF15 levels had greater atrophy in cortices and subcortical structures. In conclusion, this thesis started with examining the association of eleven inflammatory markers with ageing brains, and then focused on MIC-1/GDF15 in relation to various brain structural measures. It identified an inverse relationship between MIC-1/GDF15 and integrity of the ageing brains. The findings have practical implications for using MIC-1/GDF15 as a diagnostic and therapeutic target for age-related brain degeneration

    Cell culture models of Chorea Acanthocytosis and their evaluation

    Get PDF
    Chorea Acanthocytosis (ChAc) is an autosomal recessive inherited disease caused by loss- of-function mutation in the VPS13A gene which encodes CHOREIN protein. This study used induced pluripotent stem cells (iPSCs) as well as neural progenitor cells (NPCs) to generate medium spiny neurons (MSN) as well as midbrain dopaminergic neurons (mDAN). The first objective of this thesis was to generate and characterize a stem cell based disease model of ChAc. The second objective was to establish two different differentiation protocols that yield different neuronal sub types that are affected in ChAc, and compare whether they harbor similar phenotypes and whether the faster protocol can be used to model the disease accurately. The generated iPSCs were characterized using AP staining as an early marker for reprogramming, qPCR for analysis of residual expression of exogenous transcription factors, immunocytochemistry (ICC) for staining of pluripotency markers as well as markers for mesoderm, ectoderm and endoderm formation upon three germ layer formation. Karyotyping was conducted to exclude aberrant clones. Western blot using CHOREIN antibody revealed that the cell lines retained their disease identity. There were no differences observed between wild type and ChAc lines in stem cell and neuron populations in either protocol. qPCR analysis, investigating the expression of previously described markers for characterization, revealed no significant clustering between wild type and ChAc lines in either protocol. A disturbed ratio of globular and filamentous actin is causative for the aberrant shape of ChAc erythrocytes. Investigation of the ratio in mature neurons revealed a significant reduction of this ratio in MSN but no difference in mDAN cultures. When the ratio of cytosolic and filamentous tubulin and the acetylation of tubulin were investigated, no differences were found between wild type and ChAc lines. Mature neurons of both differentiation protocols were subjected to treatment with the proteotoxic stress inducer L-canavanine and the unfolded protein response (UPR) inducer tunicamycin. Survival was analyzed with the PrestoBlue assay as well as lactate dehydroxylase (LDH) release assay. Both cultures of mature neurons showed an increased susceptibility to the respective drugs. Furthermore the data suggests that MSN cultures are more vulnerable against proteotoxic stress (L-canavanine). Kinetics of tunicamycin poisoning were not different within MSN cultures but indicated a late cell death of ChAc lines under mDAN differentiation conditions. DNA damage plays a major role in the progression of neurodegenerative diseases. The amount of double strand breaks (DSB) was assessed in mature cultures of MSN and mDAN differentiations. There was no difference in basal level of DSB. When etoposide was applied to induce DNA damage, increased susceptibility of ChAc lines was observed. Albeit significant, the effect size was very small. Seahorse was used to characterize energy metabolism. Glycolysis was not impaired in ChAc lines in either protocol. Furthermore, MSN differentiation showed no difference in any parameter related to oxidative phosphorylation, while under mDAN conditions, coupling efficiency and spare respiratory capacity was increased for ChAc lines. The non-respiratory oxygen consumption was increased in ChAc lines in MSN cultures but decreased in mDAN cultures. The yeast homolog of VPS13A interacts with vesicle and mitochondrial membranes. Therefore, this study focuses on vesicle and mitochondria homeostasis. Live cell imaging of mature neurons of MSN differentiations revealed a decreased amount and reduced motility of mitochondria. Even though mitochondria were normally shaped their size was reduced. mDAN differentiations harbored a reduced amount and shortened mitochondria. These mitochondria, however, showed an increased motility. When analyzing aligned mature neurons in microfluidic chambers (MFCs), a strong phenotype was already observed in proximal regions, which resembled the distal parts of the channels. Hence, the dysregulation, that occurs distal in healthy controls, happens closer to the soma in diseased cells. The mitochondria potential marker JC-1 showed a hyperpolarization of mitochondria in MSN culture and a depolarization in mDAN cultures. When investigated in MFCs of mDAN cultures, there was a significant increase in potential observed at the distal position of ChAc lines, while wild type cultures showed no difference. Experiments conducted on the lysosomal compartments showed a decrease in proximal parts of ChAc MSN cultures when compared to wild type. Their shape was altered as well. mDAN cultures featured no significant morphological changes. Trafficking analysis revealed an increase in motility in MSN cultures but a decrease in mDAN cultures. When lysosomes were analyzed in MFCs only mDAN cultures showed an increase in retrograde transport. In order to investigate whether the in vitro phenotypes of Huntington (Htt) and ChAc are similar, some of the previous experiments were conducted in MSN differentiations of one Htt line. Cells from Htt behaved similar to ChAc lines when DNA damage response was investigated. Analysis of mitochondrial parameters showed no difference as well. However, the non-respiratory oxygen consumption was not increased and resembled wild type. When Htt neurons were investigated during live cell imaging, shortened mitochondria were found. Their number was not reduced significantly. However, a trend for reduction was observed. Mitochondria of Htt cells were more motile than ChAc or wild type lines. Mitochondrial potential was increased in Htt and comparable to ChAc. Lysosomal count showed a reduction and the area of Htt lysosomes was significantly smaller than wild type or ChAc. Lysosomes of Htt cells were more motile than their wild type or ChAc counterparts.:List of abbreviations Introduction 1. Neurodegenerative diseases 1.1. Chorea-acanthocytosis – a clinical overview 1.2. Chorea-Acanthocytosis – genetic considerations 2. Disease modelling 2.1. Human disease models 2.2. Induced pluripotent stem cells 2.3. Multipotent neuronal progenitor cells 3. Objectives of this thesis Materials & Methods 1. Cell culture procedures 1.1. Coating 1.2. Matrigel 1.3. PLO/laminin 1.4. Gelatin coating 1.5. Mouse embryonic fibroblast isolation 1.6. Generation of feeder cells 1.7. Human fibroblast culture 1.8. Reprogramming 1.9. iPSC culture 1.10. Culture of small molecule neuronal precursor cells (smNPC) 1.11. MSN differentiation 1.12. mDAN differentiation 2. Nucleic acid biochemistry 2.1. mRNA isolation 2.2. cDNA generation 2.3. Polymerase chain reaction (PCR) 2.4. Agarose gel electrophoresis 3. Cell survival analysis 3.1. PrestoBlue cell viability assay 3.2. Cytotoxicity detection kit: 3.3. DNA damage analysis 4. Metabolic characterization 5. Protein biochemistry 5.1. Alkaline phosphatase staining 5.2. Preparation of immunocytochemistry samples 5.3. Isolation of globular and filamentous actin 5.4. Whole cell protein Isolation 5.5. Cytosolic protein isolation 5.6. Protein concentration measurement 5.7. Western blot 6. Live cell imaging 7. Statistics Results 1. Generation of induced pluripotent stem cells 1.1. Silencing of exogenous transcription factors 1.2. Karyotyping of iPSC clones 1.3. Evaluation of pluripotency 1.4. Alkaline phosphatase staining 1.5. Staining of pluripotency markers 1.6. Three germ layer formation 1.7. Confirmation of ChAc phenotype by CHOREIN western blot 2. Characterization of differentiation potential 2.1. Differentiation efficiency 2.2. Characterization by qPCR 2.3. Ratio of polymerized and unpolymerized cytoskeleton proteins 2.4. Cell survival upon stress induction 2.5. DNA damage in mature neurons 2.6. Characterization of metabolism 3. Live cell imaging 3.1. Mitochondrial dynamics 3.1.1. Morphological analysis 3.1.1.1. Undirected neurons (96 well plate format) 3.1.1.2. Microfluidic chambers 3.1.2. Trafficking analysis 3.1.2.1. 96 well 3.1.2.2. Microfluidic chambers 3.1.3. JC-1 3.1.3.1. 96 well 3.1.3.2. Microfluidic chambers 3.2. Lysosomal dynamics 3.2.1. Morphological analysis 3.2.1.1. 96 well 3.2.1.2. Microfluidic chambers 3.2.2. Trafficking 3.2.2.1. 96 well 3.2.2.2. Microfluidic chambers 4. Comparison with Huntington’s disease 4.1. DNA damage 4.2. Characterization of metabolism 4.3. Live cell imaging 4.3.1. Mitochondria 4.3.1.1. Morphological analysis 4.3.1.2. Trafficking 4.3.1.3. JC-1 4.3.2. Lysosomes 4.3.2.1. Morphological analysis 4.3.2.2. Trafficking Discussion 1. Characterization of ChAc lines 1.1. ChAc stem cell lines show no impaired differentiation potential 1.2. Neurons from MSN differentiation have an altered G/F actin ratio 1.3. Mature neurons from ChAc lines are susceptible to UPR, proteotoxicity and DNA damage 1.4. ChAc neurons are not susceptible to DNA damage 1.5. Energy dynamics in ChAc and Huntington lines feature a shift to glycolysis 2. Live cell imaging of ChAc lines 2.1. Video analysis is reproducible and sensitive 2.2. ChAc lines have altered mitochondria shape and trafficking 2.3. Treatments are not selective on ChAc lines mitochondria 2.4. Mitochondrial potential is altered in ChAc lines 2.5. ChAc lysosomes feature normal morphology but altered trafficking 2.6. Lysosomes of MSN cultures respond poorly to treatments 3. MSN and mDAN differentiation highlight different aspects of the disease References List of figures List of tables Acknowledgments Appendi

    Patterns of variation and allometry in sub-cortical structures of the human brain: an evaluation of sex differences and age

    Get PDF
    This research tests a series of research questions concerning relationships between size, shape (static adult scaling relations) and multivariate patterns of variation in brains of adult modern humans using in vivo measurements from magnetic resonance imaging (MRI) scans. The main research questions consider if patterns of adult human sub-cortical brain dimorphisms are driven by overall brain size differences between the sexes. Sex differences in absolute brain size in humans are well known. There is a general consensus that male brains are larger in absolute size than female brains. However, discrepancies among studies in the presence and extent of dimorphisms indicate uncertainty the degree to which sexual dimorphism (SD) is spread throughout the brain, particularly within sub-cortical structures. Therefore, to address the problem of SD, this project 1) tests brain size variation and scaling relationships in sub-cortical structures between adult human males and females, 2) tests these in younger and older age categories and 3) tests the degree to which sub-cortical brain components covary in size. This study includes two groups of right-handed, native English speakers recruited from the Champaign-Urbana community. These data represent 189 healthy individuals, consisting of four sex and age categories: younger men (n=18), younger women (n=23), older men (n=50), and older women (n=98). Younger individuals ages range from 18-35 years, and older individuals ages range from 50-80 years. The individuals involved in this project were originally recruited for a study on the effects of exercise and aging on cognition (Colcombe, 2004; Erickson et. al., 2004), and were screened for psychiatric illness prior to participation. The results presented here support the hypothesis that sex differences in sub-cortical structures relative to total brain volume are moderate to non-existent between males and females ii" " both in the younger and in the older age groups. Bivariate results indicate two possible patterns of allometry: significant positive allometry with the use of a reduced major axis regression, or allometry supporting a generally isometric to negatively allometric with the use of an ordinary least squares regression. Both results are described. Multivariate results (principal components analysis) of the combined sample indicate size plays a large role in explaining the variation in the data, with other factors offering substantial contributions. On explanation is that patterns of variation in the second and perhaps third principal components might be the result of developmental and functional relationships among sub-cortical structures. The main differences between the older and younger age categories is a higher correlation among regions in the younger category, lending some support to the idea that an extended human lifespan may lead to a breakdown in correlation structure as we age. Reduced major axis regression and ordinary least squares regression offer two alternatives to understanding scaling of sub-cortical structures in the brain. OLS results are in line with expectations of scaling patterns. Issues of sample size are important to the interpretation of results in this study, and are discussed. The effects of developmental processes on adult brain size are described throughout the thesis. In particular, gonadal hormones such as estrogen and testosterone have been hypothesized to result in larger or smaller structures in each of the sexes. The potential impact these hormones have on sex differences in the brain and on behavior support the idea that hormones may play a large role in determining differences in function, and that may or may not result in measurable differences in brain volumes. Finally, implications of this study and avenues for future research are discussed
    corecore