26,713 research outputs found

    Shape Robust Text Detection with Progressive Scale Expansion Network

    Full text link
    The challenges of shape robust text detection lie in two aspects: 1) most existing quadrangular bounding box based detectors are difficult to locate texts with arbitrary shapes, which are hard to be enclosed perfectly in a rectangle; 2) most pixel-wise segmentation-based detectors may not separate the text instances that are very close to each other. To address these problems, we propose a novel Progressive Scale Expansion Network (PSENet), designed as a segmentation-based detector with multiple predictions for each text instance. These predictions correspond to different `kernels' produced by shrinking the original text instance into various scales. Consequently, the final detection can be conducted through our progressive scale expansion algorithm which gradually expands the kernels with minimal scales to the text instances with maximal and complete shapes. Due to the fact that there are large geometrical margins among these minimal kernels, our method is effective to distinguish the adjacent text instances and is robust to arbitrary shapes. The state-of-the-art results on ICDAR 2015 and ICDAR 2017 MLT benchmarks further confirm the great effectiveness of PSENet. Notably, PSENet outperforms the previous best record by absolute 6.37\% on the curve text dataset SCUT-CTW1500. Code will be available in https://github.com/whai362/PSENet.Comment: 12 pages, 11 figure

    Shape Robust Text Detection with Progressive Scale Expansion Network

    Full text link
    Scene text detection has witnessed rapid progress especially with the recent development of convolutional neural networks. However, there still exists two challenges which prevent the algorithm into industry applications. On the one hand, most of the state-of-art algorithms require quadrangle bounding box which is in-accurate to locate the texts with arbitrary shape. On the other hand, two text instances which are close to each other may lead to a false detection which covers both instances. Traditionally, the segmentation-based approach can relieve the first problem but usually fail to solve the second challenge. To address these two challenges, in this paper, we propose a novel Progressive Scale Expansion Network (PSENet), which can precisely detect text instances with arbitrary shapes. More specifically, PSENet generates the different scale of kernels for each text instance, and gradually expands the minimal scale kernel to the text instance with the complete shape. Due to the fact that there are large geometrical margins among the minimal scale kernels, our method is effective to split the close text instances, making it easier to use segmentation-based methods to detect arbitrary-shaped text instances. Extensive experiments on CTW1500, Total-Text, ICDAR 2015 and ICDAR 2017 MLT validate the effectiveness of PSENet. Notably, on CTW1500, a dataset full of long curve texts, PSENet achieves a F-measure of 74.3% at 27 FPS, and our best F-measure (82.2%) outperforms state-of-art algorithms by 6.6%. The code will be released in the future.Comment: Accepted by CVPR 2019. arXiv admin note: substantial text overlap with arXiv:1806.0255

    Pyramid Mask Text Detector

    Full text link
    Scene text detection, an essential step of scene text recognition system, is to locate text instances in natural scene images automatically. Some recent attempts benefiting from Mask R-CNN formulate scene text detection task as an instance segmentation problem and achieve remarkable performance. In this paper, we present a new Mask R-CNN based framework named Pyramid Mask Text Detector (PMTD) to handle the scene text detection. Instead of binary text mask generated by the existing Mask R-CNN based methods, our PMTD performs pixel-level regression under the guidance of location-aware supervision, yielding a more informative soft text mask for each text instance. As for the generation of text boxes, PMTD reinterprets the obtained 2D soft mask into 3D space and introduces a novel plane clustering algorithm to derive the optimal text box on the basis of 3D shape. Experiments on standard datasets demonstrate that the proposed PMTD brings consistent and noticeable gain and clearly outperforms state-of-the-art methods. Specifically, it achieves an F-measure of 80.13% on ICDAR 2017 MLT dataset

    Detecting Curve Text with Local Segmentation Network and Curve Connection

    Full text link
    Curve text or arbitrary shape text is very common in real-world scenarios. In this paper, we propose a novel framework with the local segmentation network (LSN) followed by the curve connection to detect text in horizontal, oriented and curved forms. The LSN is composed of two elements, i.e., proposal generation to get the horizontal rectangle proposals with high overlap with text and text segmentation to find the arbitrary shape text region within proposals. The curve connection is then designed to connect the local mask to the detection results. We conduct experiments using the proposed framework on two real-world curve text detection datasets and demonstrate the effectiveness over previous approaches

    TextCohesion: Detecting Text for Arbitrary Shapes

    Full text link
    In this paper, we propose a pixel-wise method named TextCohesion for scene text detection, which splits a text instance into five key components: a Text Skeleton and four Directional Pixel Regions. These components are easier to handle than the entire text instance. A confidence scoring mechanism is designed to filter characters that are similar to text. Our method can integrate text contexts intensively when backgrounds are complex. Experiments on two curved challenging benchmarks demonstrate that TextCohesion outperforms state-of-the-art methods, achieving the F-measure of 84.6% on Total-Text and bfseries86.3% on SCUT-CTW1500.Comment: Scene Text Detection Instance Segmentatio

    Look More Than Once: An Accurate Detector for Text of Arbitrary Shapes

    Full text link
    Previous scene text detection methods have progressed substantially over the past years. However, limited by the receptive field of CNNs and the simple representations like rectangle bounding box or quadrangle adopted to describe text, previous methods may fall short when dealing with more challenging text instances, such as extremely long text and arbitrarily shaped text. To address these two problems, we present a novel text detector namely LOMO, which localizes the text progressively for multiple times (or in other word, LOok More than Once). LOMO consists of a direct regressor (DR), an iterative refinement module (IRM) and a shape expression module (SEM). At first, text proposals in the form of quadrangle are generated by DR branch. Next, IRM progressively perceives the entire long text by iterative refinement based on the extracted feature blocks of preliminary proposals. Finally, a SEM is introduced to reconstruct more precise representation of irregular text by considering the geometry properties of text instance, including text region, text center line and border offsets. The state-of-the-art results on several public benchmarks including ICDAR2017-RCTW, SCUT-CTW1500, Total-Text, ICDAR2015 and ICDAR17-MLT confirm the striking robustness and effectiveness of LOMO.Comment: Accepted by CVPR1

    Local Feature Detectors, Descriptors, and Image Representations: A Survey

    Full text link
    With the advances in both stable interest region detectors and robust and distinctive descriptors, local feature-based image or object retrieval has become a popular research topic. %All of the local feature-based image retrieval system involves two important processes: local feature extraction and image representation. The other key technology for image retrieval systems is image representation such as the bag-of-visual words (BoVW), Fisher vector, or Vector of Locally Aggregated Descriptors (VLAD) framework. In this paper, we review local features and image representations for image retrieval. Because many and many methods are proposed in this area, these methods are grouped into several classes and summarized. In addition, recent deep learning-based approaches for image retrieval are briefly reviewed.Comment: 20 page

    Self-Training for Domain Adaptive Scene Text Detection

    Full text link
    Though deep learning based scene text detection has achieved great progress, well-trained detectors suffer from severe performance degradation for different domains. In general, a tremendous amount of data is indispensable to train the detector in the target domain. However, data collection and annotation are expensive and time-consuming. To address this problem, we propose a self-training framework to automatically mine hard examples with pseudo-labels from unannotated videos or images. To reduce the noise of hard examples, a novel text mining module is implemented based on the fusion of detection and tracking results. Then, an image-to-video generation method is designed for the tasks that videos are unavailable and only images can be used. Experimental results on standard benchmarks, including ICDAR2015, MSRA-TD500, ICDAR2017 MLT, demonstrate the effectiveness of our self-training method. The simple Mask R-CNN adapted with self-training and fine-tuned on real data can achieve comparable or even superior results with the state-of-the-art methods

    Bridge Bounding: A Local Approach for Efficient Community Discovery in Complex Networks

    Full text link
    The increasing importance of Web 2.0 applications during the last years has created significant interest in tools for analyzing and describing collective user activities and emerging phenomena within the Web. Network structures have been widely employed in this context for modeling users, web resources and relations between them. However, the amount of data produced by modern web systems results in networks that are of unprecedented size and complexity, and are thus hard to interpret. To this end, community detection methods attempt to uncover natural groupings of web objects by analyzing the topology of their containing network. There are numerous techniques adopting a global perspective to the community detection problem, i.e. they operate on the complete network structure, thus being computationally expensive and hard to apply in a streaming manner. In order to add a local perspective to the study of the problem, we present Bridge Bounding, a local methodology for community detection, which explores the local network topology around a seed node in order to identify edges that act as boundaries to the local community. The proposed method can be integrated in an efficient global community detection scheme that compares favorably to the state of the art. As a case study, we apply the method to explore the topic structure of the LYCOS iQ collaborative question/answering application by detecting communities in the networks created from the collective tagging activity of users.Comment: 10 pages, 10 figure

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape
    corecore