2,454 research outputs found

    Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination

    Get PDF
    We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure

    Empirical geodesic graphs and CAT(k) metrics for data analysis

    Full text link
    A methodology is developed for data analysis based on empirically constructed geodesic metric spaces. For a probability distribution, the length along a path between two points can be defined as the amount of probability mass accumulated along the path. The geodesic, then, is the shortest such path and defines a geodesic metric. Such metrics are transformed in a number of ways to produce parametrised families of geodesic metric spaces, empirical versions of which allow computation of intrinsic means and associated measures of dispersion. These reveal properties of the data, based on geometry, such as those that are difficult to see from the raw Euclidean distances. Examples of application include clustering and classification. For certain parameter ranges, the spaces become CAT(0) spaces and the intrinsic means are unique. In one case, a minimal spanning tree of a graph based on the data becomes CAT(0). In another, a so-called "metric cone" construction allows extension to CAT(kk) spaces. It is shown how to empirically tune the parameters of the metrics, making it possible to apply them to a number of real cases.Comment: Statistics and Computing, 201

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project
    • …
    corecore