5,868 research outputs found

    Facial Expression Recognition

    Get PDF

    Observations on Cortical Mechanisms for Object Recognition andsLearning

    Get PDF
    This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data

    Pose Invariant 3D Face Authentication based on Gaussian Fields Approach

    Get PDF
    This thesis presents a novel illuminant invariant approach to recognize the identity of an individual from his 3D facial scan in any pose, by matching it with a set of frontal models stored in the gallery. In view of today’s security concerns, 3D face reconstruction and recognition has gained a significant position in computer vision research. The non intrusive nature of facial data acquisition makes face recognition one of the most popular approaches for biometrics-based identity recognition. Depth information of a 3D face can be used to solve the problems of illumination and pose variation associated with face recognition. The proposed method makes use of 3D geometric (point sets) face representations for recognizing faces. The use of 3D point sets to represent human faces in lieu of 2D texture makes this method robust to changes in illumination and pose. The method first automatically registers facial point-sets of the probe with the gallery models through a criterion based on Gaussian force fields. The registration method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. The new method overcomes the necessity of close initialization and converges in much less iterations as compared to the Iterative Closest Point algorithm. The use of an optimization method, the Fast Gauss Transform, allows a considerable reduction in the computational complexity of the registration algorithm. Recognition is then performed by using the robust similarity score generated by registering 3D point sets of faces. Our approach has been tested on a large database of 85 individuals with 521 scans at different poses, where the gallery and the probe images have been acquired at significantly different times. The results show the potential of our approach toward a fully pose and illumination invariant system. Our method can be successfully used as a potential biometric system in various applications such as mug shot matching, user verification and access control, and enhanced human computer interaction

    Surface-bounded growth modeling applied to human mandibles

    Get PDF
    From a set of longitudinal three-dimensional scans of the same anatomical structure, we have accurately modeled the temporal shape and size changes using a linear shape model. On a total of 31 computed tomography scans of the mandible from six patients, 14851 semilandmarks are found automatically using shape features and a new algorithm called geometry-constrained diffusion. The semilandmarks are mapped into Procrustes space. Principal component analysis extracts a one-dimensional subspace, which is used to construct a linear growth model. The worst case mean modeling error in a cross validation study is 3.7 mm
    corecore