5,320 research outputs found

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Reconstructing specular objects with Image Based Rendering using Color Caching

    Get PDF
    Various Image Based Rendering (IBR) techniques have been proposed to reconstruct scenes from its images. Voxel-based IBR algorithms reconstruct Lambertian scenes well, but fail for specular objects due to limitations of their consistency checks. We show that the conventional consistency techniques fail due to the large variation in reflected color of the surface for different viewing positions. We present a new consistency approach that can predict this variation in color and reconstruct specular objects present in the scene. We also present an evaluation of our technique by comparing it with three other consistency methods

    Evaluation of an Area-Based matching algorithm with advanced shape models

    Get PDF
    Nowadays, the scientific institutions involved in planetary mapping are working on new strategies to produce accurate high resolution DTMs from space images at planetary scale, usually dealing with extremely large data volumes. From a methodological point of view, despite the introduction of a series of new algorithms for image matching (e.g. the Semi Global Matching) that yield superior results (especially because they produce usually smooth and continuous surfaces) with lower processing times, the preference in this field still goes to well established area-based matching techniques. Many efforts are consequently directed to improve each phase of the photogrammetric process, from image pre-processing to DTM interpolation. In this context, the Dense Matcher software (DM) developed at the University of Parma has been recently optimized to cope with very high resolution images provided by the most recent missions (LROC NAC and HiRISE) focusing the efforts mainly to the improvement of the correlation phase and the process automation. Important changes have been made to the correlation algorithm, still maintaining its high performance in terms of precision and accuracy, by implementing an advanced version of the Least Squares Matching (LSM) algorithm. In particular, an iterative algorithm has been developed to adapt the geometric transformation in image resampling using different shape functions as originally proposed by other authors in different applications
    corecore