55 research outputs found

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented

    Synergistic Smart Morphing Aileron

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106472/1/AIAA2013-1512.pd

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced

    Conceptual Study of Rotary-Wing Microrobotics

    Get PDF
    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics. Two methods for fabricating an angled wing were also attempted with photoresist and CrystalBond™ to create an angle of attack. One particular design consisted of the wing designs mounted on a gear which are driven by MEMS actuators. MEMS comb drive actuators were analyzed, simulated and tested as a feasible drive system. The comb drive resonators were also designed orthogonally which successfully rotated a gear without wings. With wings attached to the gear, orthogonal MEMS thermal actuators demonstrated wing rotation with limited success. Multi-disciplinary theoretical expressions were formulated to account for necessary mechanical force, allowable mass for lift, and electrical power requirements. The robot design did not achieve flight, but the small pieces presented in this research with minor modifications are promising for a potential complete robot design under 1 cm2 wingspan. The complete robot design would work best in a symmetrical quad-rotor configuration for simpler maneuverability and control. The military’s method to gather surveillance, reconnaissance and intelligence could be transformed given a MEMS rotary-wing robot’s diminutive size and multi-role capabilities

    Power-Scavenging MEMS Robots

    Get PDF
    This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was identified. It also was determined that the actuator-wing configuration with maximum deflection and surface area yet minimum mass had the greatest lift-to-weight ratio. Powered testing results showed that the microrobots successfully scavenged power from a remote 660-nm laser. These microrobots also demonstrated rapid downward flapping, but none achieved flight. The results show that the microrobots were too heavy and lacked sufficient wing surface area. It was determined that a successfully flying microrobot can be achieved by adding a robust, light-weight material to the optimum actuator-wing configuration—similar to insect wings. The ultimate objective of the flying microrobot project is an autonomous, fully maneuverable flying microrobot that is capable of sensing and acting upon a target. Such a microrobot would be capable of precise lethality, accurate battle-damage assessment, and successful penetration of otherwise inaccessible targets

    DESIGN, ANALYSIS, AND TESTING OF A FLAPPING WING MINIATURE AIR VEHICLE

    Get PDF
    Flapping wing miniature air vehicles (MAVs) offer several advantageous performance benefits, relative to fixed-wing and rotary-wing MAVs. The goal of this thesis is to design a flapping wing MAV that achieves improved performance by focusing on the flapping mechanism and the spar arrangement in the wings. Two variations of the flapping mechanism are designed and tested, both using compliance as a technique for improved functionality. In the design of these mechanisms, kinematics and dynamics simulation is used to evaluate how forces encountered during wing flapping affect the mechanism. Finite element analysis is used to evaluate the stress and deformation of the mechanism, such that a lightweight yet functional design can be realized. The wings are tested using experimental techniques. These techniques include high speed photography, stiffness measurement, and lift and thrust measurements. Experimentally measured force results are validated with a series of flight tests. A framework for iterative improvement of the MAV is described, that uses the results of physical testing and simulations to investigate the underlying causes of MAV performance aspects; and seeks to capture those beneficial aspects that will allow for performance improvements. Wings and flapping mechanisms designed in this thesis are used to realize a bird-inspired flapping wing miniature air vehicle. This vehicle is capable of radio controlled flights indoors and outdoors in winds up to 6.7m/s with controlled steering, ascent, and descent, as well as payload carrying abilities

    Soft Components for Soft Robots

    Get PDF

    Synergistic Smart Morphing Aileron: Aero-structural Performance Analysis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140418/1/6.2014-0924.pd

    DESIGN AND CONTROL OF A HUMMINGBIRD-SIZE FLAPPING WING MICRO AERIAL VEHICLE

    Get PDF
    Flying animals with flapping wings may best exemplify the astonishing ability of natural selection on design optimization. They evince extraordinary prowess to control their flight, while demonstrating rich repertoire of agile maneuvers. They remain surprisingly stable during hover and can make sharp turns in a split second. Characterized by high-frequency flapping wing motion, unsteady aerodynamics, and the ability to hover and perform fast maneuvers, insect-like flapping flight presents an extraordinary aerial locomotion strategy perfected at small size scales. Flapping Wing Micro Aerial Vehicles (FWMAVs) hold great promise in bridging the performance gap between engineered flying vehicles and their natural counterparts. They are perfect candidates for potential applications such as fast response robots in search and rescue, environmental friendly agents in precision agriculture, surveillance and intelligence gathering MAVs, and miniature nodes in sensor networks
    • …
    corecore