375 research outputs found

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Shape localization, quantification and correspondence using Region Matching Algorithm

    Get PDF
    We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important differences between them

    Similarity Measurement of Breast Cancer Mammographic Images Using Combination of Mesh Distance Fourier Transform and Global Features

    Get PDF
    Similarity measurement in breast cancer is an important aspect of determining the vulnerability of detected masses based on the previous cases. It is used to retrieve the most similar image for a given mammographic query image from a collection of previously archived images. By analyzing these results, doctors and radiologists can more accurately diagnose early-stage breast cancer and determine the best treatment. The direct result is better prognoses for breast cancer patients. Similarity measurement in images has always been a challenging task in the field of pattern recognition. A widely-adopted strategy in Content-Based Image Retrieval (CBIR) is comparison of local shape-based features of images. Contours summarize the orientations and sizes images, allowing for heuristic approach in measuring similarity between images. Similarly, global features of an image have the ability to generalize the entire object with a single vector which is also an important aspect of CBIR. The main objective of this paper is to enhance the similarity measurement between query images and database images so that the best match is chosen from the database for a particular query image, thus decreasing the chance of false positives. In this paper, a method has been proposed which compares both local and global features of images to determine their similarity. Three image filters are applied to make this comparison. First, we filter using the mesh distance Fourier descriptor (MDFD), which is based on the calculation of local features of the mammographic image. After this filter is applied, we retrieve the five most similar images from the database. Two additional filters are applied to the resulting image set to determine the best match. Experiments show that this proposed method overcomes shortcomings of existing methods, increasing accuracy of matches from 68% to 88%

    Shape matching by integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a frequently encountered problem in vision and medical image analysis and more generally in computer vision. To keep track of changes inside breast, it is important for a computer aided diagnosis system (CAD) to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants and geodesic distance yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants are used on 2D planar shapes to describe the shape boundary. However, they provide no information about where a particular feature on the boundary lies with regard to overall shape structure. On the other hand, eccentricity transforms can be used to match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines both the boundary signature of shape obtained from integral invariants and structural information from the eccentricity transform to yield improved results

    Neural network-based shape retrieval using moment invariants and Zernike moments.

    Get PDF
    Shape is one of the fundamental image features for use in Content-Based Image Retrieval (CBIR). Compared with other visual features such as color and texture, it is extremely powerful and provides capability for object recognition and similarity-based image retrieval. In this thesis, we propose a Neural Network-Based Shape Retrieval System using Moment Invariants and Zernike Moments. Moment Invariants and Zernike Moments are two region-based shape representation schemes and are derived from the shape in an image and serve as image features. k means clustering is used to group similar images in an image collection into k clusters whereas Neural Network is used to facilitate retrieval against a given query image. Neural Network is trained by the clustering result on all of the images in the collection using back-propagation algorithm. In this scheme, Neural Network serves as a classifier such that moments are inputs to the Neural Network and the output is one of the k classes that have the largest similarities to the query image. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .C444. Source: Masters Abstracts International, Volume: 44-03, page: 1396. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Never a \u27needless\u27 suicide: An empirical test of Shneidman\u27s theory of psychological needs, psychological pain, and suicidality (Edwin Shneidman).

    Get PDF
    The phenomenology of suicidal thoughts and behaviour has been an area of increased interest in recent years. One particular area of focus is psychological pain, or psychache. In this dissertation, Edwin Shneidman\u27s psychological theory of suicide was studied. Shneidman has theorized that psychological needs are associated with the development of psychological pain, which in turn leads to suicide as an escape from pain. Two hundred and fifty-seven undergraduate students completed the Personality Research Form, the Psychache Scale, the Orbach and Mikulincer Mental Pain Scale, two items from Shneidman\u27s Psychological Pain Assessment Scale, as well as demographic and suicide history items. Measures of psychological pain demonstrated convergent validity. Low need for affiliation and high impulsivity were significantly related to psychological pain. All measures of psychological pain were associated with suicidal ideation and history of suicide attempts. Possible gender differences emerged. This study provides some evidence for Shneidman\u27s theory, although not all identified needs were supported. The importance of understanding the role of psychological pain in the phenomenology of suicidal thinking and behaviour is emphasized.Dept. of Psychology. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .D375. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6267. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    Multi-Technique Fusion for Shape-Based Image Retrieval

    Get PDF
    Content-based image retrieval (CBIR) is still in its early stages, although several attempts have been made to solve or minimize challenges associated with it. CBIR techniques use such visual contents as color, texture, and shape to represent and index images. Of these, shapes contain richer information than color or texture. However, retrieval based on shape contents remains more difficult than that based on color or texture due to the diversity of shapes and the natural occurrence of shape transformations such as deformation, scaling and orientation. This thesis presents an approach for fusing several shape-based image retrieval techniques for the purpose of achieving reliable and accurate retrieval performance. An extensive investigation of notable existing shape descriptors is reported. Two new shape descriptors have been proposed as means to overcome limitations of current shape descriptors. The first descriptor is based on a novel shape signature that includes corner information in order to enhance the performance of shape retrieval techniques that use Fourier descriptors. The second descriptor is based on the curvature of the shape contour. This invariant descriptor takes an unconventional view of the curvature-scale-space map of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to capture the detailed dynamics of the curvature of the shape and enhances the efficiency of the shape-matching process. Several experiments have been conducted in order to compare the proposed descriptors with several notable descriptors. The new descriptors not only speed up the online matching process, but also lead to improved retrieval accuracy. The complexity and variety of the content of real images make it impossible for a particular choice of descriptor to be effective for all types of images. Therefore, a data- fusion formulation based on a team consensus approach is proposed as a means of achieving high accuracy performance. In this approach a select set of retrieval techniques form a team. Members of the team exchange information so as to complement each other’s assessment of a database image candidate as a match to query images. Several experiments have been conducted based on the MPEG-7 contour-shape databases; the results demonstrate that the performance of the proposed fusion scheme is superior to that achieved by any technique individually
    • …
    corecore