31,058 research outputs found

    Automatic nesting seabird detection based on boosted HOG-LBP descriptors

    Get PDF
    Seabird populations are considered an important and accessible indicator of the health of marine environments: variations have been linked with climate change and pollution 1. However, manual monitoring of large populations is labour-intensive, and requires significant investment of time and effort. In this paper, we propose a novel detection system for monitoring a specific population of Common Guillemots on Skomer Island, West Wales (UK). We incorporate two types of features, Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP), to capture the edge/local shape information and the texture information of nesting seabirds. Optimal features are selected from a large HOG-LBP feature pool by boosting techniques, to calculate a compact representation suitable for the SVM classifier. A comparative study of two kinds of detectors, i.e., whole-body detector, head-beak detector, and their fusion is presented. When the proposed method is applied to the seabird detection, consistent and promising results are achieved. © 2011 IEEE

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered
    corecore