255,232 research outputs found

    Segmentation and classification of individual tree crowns

    Get PDF
    By segmentation and classification of individual tree crowns in high spatial resolution aerial images, information about the forest can be automatically extracted. Segmentation is about finding the individual tree crowns and giving each of them a unique label. Classification, on the other hand, is about recognising the species of the tree. The information of each individual tree in the forest increases the knowledge about the forest which can be useful for managements, biodiversity assessment, etc. Different algorithms for segmenting individual tree crowns are presented and also compared to each other in order to find their strengths and weaknesses. All segmentation algorithms developed in this thesis focus on preserving the shape of the tree crown. Regions, representing the segmented tree crowns, grow according to certain rules from seed points. One method starts from many regions for each tree crown and searches for the region that fits the tree crown best. The other methods start from a set of seed points, representing the locations of the tree crowns, to create the regions. The segmentation result varies from 73 to 95 % correctly segmented visual tree crowns depending on the type of forest and the method. The former value is for a naturally generated mixed forest and the latter for a non-mixed forest. The classification method presented uses shape information of the segments and colour information of the corresponding tree crown in order to decide the species. The classification method classifies 77 % of the visual trees correctly in a naturally generated mixed forest, but on a forest stand level the classification is over 90 %

    Efficient Nearest Neighbor Classification Using a Cascade of Approximate Similarity Measures

    Full text link
    Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.National Science Foundation (IIS-0308213, IIS-0329009, EIA-0202067); Office of Naval Research (N00014-03-1-0108

    The Bayesian Decision Tree Technique with a Sweeping Strategy

    Full text link
    The uncertainty of classification outcomes is of crucial importance for many safety critical applications including, for example, medical diagnostics. In such applications the uncertainty of classification can be reliably estimated within a Bayesian model averaging technique that allows the use of prior information. Decision Tree (DT) classification models used within such a technique gives experts additional information by making this classification scheme observable. The use of the Markov Chain Monte Carlo (MCMC) methodology of stochastic sampling makes the Bayesian DT technique feasible to perform. However, in practice, the MCMC technique may become stuck in a particular DT which is far away from a region with a maximal posterior. Sampling such DTs causes bias in the posterior estimates, and as a result the evaluation of classification uncertainty may be incorrect. In a particular case, the negative effect of such sampling may be reduced by giving additional prior information on the shape of DTs. In this paper we describe a new approach based on sweeping the DTs without additional priors on the favorite shape of DTs. The performances of Bayesian DT techniques with the standard and sweeping strategies are compared on a synthetic data as well as on real datasets. Quantitatively evaluating the uncertainty in terms of entropy of class posterior probabilities, we found that the sweeping strategy is superior to the standard strategy

    Hierarchical Graphical Models for Multigroup Shape Analysis using Expectation Maximization with Sampling in Kendall's Shape Space

    Full text link
    This paper proposes a novel framework for multi-group shape analysis relying on a hierarchical graphical statistical model on shapes within a population.The framework represents individual shapes as point setsmodulo translation, rotation, and scale, following the notion in Kendall shape space.While individual shapes are derived from their group shape model, each group shape model is derived from a single population shape model. The hierarchical model follows the natural organization of population data and the top level in the hierarchy provides a common frame of reference for multigroup shape analysis, e.g. classification and hypothesis testing. Unlike typical shape-modeling approaches, the proposed model is a generative model that defines a joint distribution of object-boundary data and the shape-model variables. Furthermore, it naturally enforces optimal correspondences during the process of model fitting and thereby subsumes the so-called correspondence problem. The proposed inference scheme employs an expectation maximization (EM) algorithm that treats the individual and group shape variables as hidden random variables and integrates them out before estimating the parameters (population mean and variance and the group variances). The underpinning of the EM algorithm is the sampling of pointsets, in Kendall shape space, from their posterior distribution, for which we exploit a highly-efficient scheme based on Hamiltonian Monte Carlo simulation. Experiments in this paper use the fitted hierarchical model to perform (1) hypothesis testing for comparison between pairs of groups using permutation testing and (2) classification for image retrieval. The paper validates the proposed framework on simulated data and demonstrates results on real data.Comment: 9 pages, 7 figures, International Conference on Machine Learning 201

    Index Trees for Efficient Deformable Shape-based Retrieval

    Full text link
    An improved method for deformable shape-based image indexing and retrieval is described. A pre-computed index tree is used to improve the speed of our previously reported on-line model fitting method; simple shape features are used as keys in a pre-generated index tree of model instances. In addition, a coarse to fine indexing scheme is used at different levels of the tree to further improve speed while maintaining matching accuracy. Experimental results show that the speedup is significant, while accuracy of shape-based indexing is maintained. A method for shape population-based retrieval is also described. The method allows query formulation based on the population distributions of shapes in each image. Results of population-based image queries for a database of blood cell micrographs are shown.Office of Naval Research (Young Investigator Award, N00014-96-1-066); National Science Foundation (IIS-9624168, EIA-9623865

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    Multi-Sensor Event Detection using Shape Histograms

    Full text link
    Vehicular sensor data consists of multiple time-series arising from a number of sensors. Using such multi-sensor data we would like to detect occurrences of specific events that vehicles encounter, e.g., corresponding to particular maneuvers that a vehicle makes or conditions that it encounters. Events are characterized by similar waveform patterns re-appearing within one or more sensors. Further such patterns can be of variable duration. In this work, we propose a method for detecting such events in time-series data using a novel feature descriptor motivated by similar ideas in image processing. We define the shape histogram: a constant dimension descriptor that nevertheless captures patterns of variable duration. We demonstrate the efficacy of using shape histograms as features to detect events in an SVM-based, multi-sensor, supervised learning scenario, i.e., multiple time-series are used to detect an event. We present results on real-life vehicular sensor data and show that our technique performs better than available pattern detection implementations on our data, and that it can also be used to combine features from multiple sensors resulting in better accuracy than using any single sensor. Since previous work on pattern detection in time-series has been in the single series context, we also present results using our technique on multiple standard time-series datasets and show that it is the most versatile in terms of how it ranks compared to other published results

    Perceiving animacy from shape

    Get PDF
    Superordinate visual classification—for example, identifying an image as “animal,” “plant,” or “mineral”—is computationally challenging because radically different items (e.g., “octopus,” “dog”) must be grouped into a common class (“animal”). It is plausible that learning superordinate categories teaches us not only the membership of particular (familiar) items, but also general features that are shared across class members, aiding us in classifying novel (unfamiliar) items. Here, we investigated visual shape features associated with animate and inanimate classes. One group of participants viewed images of 75 unfamiliar and atypical items and provided separate ratings of how much each image looked like an animal, plant, and mineral. Results show systematic tradeoffs between the ratings, indicating a class-like organization of items. A second group rated each image in terms of 22 midlevel shape features (e.g., “symmetrical,” “curved”). The results confirm that superordinate classes are associated with particular shape features (e.g., “animals” generally have high “symmetry” ratings). Moreover, linear discriminant analysis based on the 22-D feature vectors predicts the perceived classes approximately as well as the ground truth classification. This suggests that a generic set of midlevel visual shape features forms the basis for superordinate classification of novel objects along the animacy continuum
    • …
    corecore