3,309 research outputs found

    A Robust SVM Color-Based Food Segmentation Algorithm for the Production Process of a Traditional Carasau Bread

    Get PDF
    In this paper, we address the problem of automatic image segmentation methods applied to the partial automation of the production process of a traditional Sardinian flatbread called pane Carasau for assuring quality control. The study focuses on one of the most critical activities for obtaining an efficient degree of automation: the estimation of the size and shape of the bread sheets during the production phase, to study the shape variations undergone by the sheet depending on some environmental and production variables. The knowledge can thus be used to create a system capable of predicting the quality of the shape of the dough produced and empower the production process. We implemented an image acquisition system and created an efficient machine learning algorithm, based on support vector machines, for the segmentation and estimation of image measurements for Carasau bread. Experiments demonstrated that the method can successfully achieve accurate segmentation of bread sheets images, ensuring that the dimensions extracted are representative of the sheets coming from the production process. The algorithm proved to be fast and accurate in estimating the size of the bread sheets in various scenarios that occurred over a year of acquisitions. The maximum error committed by the algorithm is equal to the 2.2% of the pixel size in the worst scenario and to 1.2% elsewhere

    Embodied Question Answering

    Full text link
    We present a new AI task -- Embodied Question Answering (EmbodiedQA) -- where an agent is spawned at a random location in a 3D environment and asked a question ("What color is the car?"). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ("orange"). This challenging task requires a range of AI skills -- active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.Comment: 20 pages, 13 figures, Webpage: https://embodiedqa.org

    Image Analysis for X-ray Imaging of Food

    Get PDF

    What Can I Do Around Here? Deep Functional Scene Understanding for Cognitive Robots

    Full text link
    For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localizing and recognition of functional areas from an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is complied from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized onto novel indoor scenes by cross validating it with the images from two different datasets
    • …
    corecore