99,579 research outputs found

    Imaging and 3D reconstruction of membrane protein complexes by cryo-electron microscopy and single particle analysis

    Get PDF
    Cryo-electron microscopy (cryo-EM) in combination with single particle image processing and volume reconstruction is a powerful technology to obtain medium-resolution structures of large protein complexes, which are extremely diļ¬ƒcult to crystallize and not amenable to NMR studies due to size limitation. Depending on the stability and stiļ¬€ness as well as on the symmetry of the complex, three-dimensional reconstructions at a resolution of 10-30 Ėš can be achieved. In this range of resolution, we may not be able to answer A chemical questions at the level of atomic interactions, but we can gain detailed insight into the macromolecular architecture of large multi-subunit complexes and their mechanisms of action. In this thesis, several prevalently large membrane protein complexes of great physiological importance were examined by various electron microscopy techniques and single particle image analysis. The core part of my work consists in the imaging of a mammalian V-ATPase, frozen-hydrated in amorphous ice and of the completion of the ļ¬rst volume reconstruction of this type of enzyme, derived from cryo-EM images. This ubiquitous rotary motor is essential in every eukaryotic cell and is of high medical importance due to its implication in various diseases such as osteoporosis, skeletal cancer and kidney disorders. My contribution to the second and third paper concerns the volume reconstruction of two bacterial outer membrane pore complexes from cryo-EM images recorded by my colleague Mohamed Chami. PulD from Klebsiella oxytoca constitutes a massive translocating pore capable of transporting a fully folded cell surface protein PulA through the membrane. It is part of the Type II secretion system, which is common for Gram-negative bacteria. The second volume regards ClyA, a pore-forming heamolytic toxin of virulent Escherichia coli and Salmonella enterica strains that kill target cells by inserting pores into their membranes. To the last two papers, I contributed with cryo-negative stain imaging of the cell division protein DivIVA from Bacillus subtilis and with image processing of the micrographs displaying the siderophore receptor FrpB from Neisseria meningitidis

    Mutations in the Lipopolysaccharide Biosynthesis Pathway Interfere with Crescentin-Mediated Cell Curvature in Caulobacter crescentus

    Get PDF
    Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant Opolysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry.

    Get PDF
    The structure of rat liver vault ribonucleoprotein particles was examined using several different staining techniques in conjunction with EM and digestion with hydrolytic enzymes. Quantitative scanning transmission EM demonstrates that each vault particle has a total mass of 12.9 +/- 1 MD and contains two centers of mass, suggesting that each vault particle is a dimer. Freeze-etch reveals that each vault opens into delicate flower-like structures, in which eight rectangular petals are joined to a central ring, each by a thin hook. Vaults examined by negative stain and conventional transmission EM (CTEM) also reveal the flower-like structure. Trypsin treatment of vaults resulted exclusively in cleavage of the major vault protein (p104) and concurrently alters their structure as revealed by negative stain/CTEM, consistent with a localization of p104 to the flower petals. We propose a structural model that predicts the stoichiometry of vault proteins and RNA, defines vault dimer-monomer interactions, and describes two possible modes for unfolding of vaults into flowers. These highly dynamic structural variations are likely to play a role in vault function

    Liposome-based liquid handling platform featuring addition, mixing, and aliquoting of femtoliter volumes

    Get PDF
    This paper describes the utilization of giant unilamellar vesicles (GUVs) as a platform for handling chemical and biochemical reagents. GUVs with diameters of 5 to 10 Āµm and containing chemical/biochemical reagents together with inert polymers were fused with electric pulses (electrofusion). After reagent mixing, the fused GUVs spontaneously deformed to a budding shape, separating the mixed solution into sub-volumes. We utilized a microfluidic channel and optical tweezers to select GUVs of interest, bring them into contact, and fuse them together to mix and aliquot the reaction product. We also show that, by lowering the ambient temperature close to the phase transition temperature Tm of the lipid used, daughter GUVs completely detached (fission). This process performs all the liquid-handing features used in bench-top biochemistry using the GUV, which could be advantageous for the membrane-related biochemical assays
    • ā€¦
    corecore