5,010 research outputs found

    Added value of morphological features to breast lesion diagnosis in ultrasound

    Full text link
    Ultrasound imaging plays an important role in breast lesion differentiation. However, diagnostic accuracy depends on ultrasonographer experience. Various computer aided diagnosis systems has been developed to improve breast cancer detection and reduce the number of unnecessary biopsies. In this study, our aim was to improve breast lesion classification based on the BI-RADS (Breast Imaging - Reporting and Data System). This was accomplished by combining the BI-RADS with morphological features which assess lesion boundary. A dataset of 214 lesion images was used for analysis. 30 morphological features were extracted and feature selection scheme was applied to find features which improve the BI-RADS classification performance. Additionally, the best performing morphological feature subset was indicated. We obtained a better classification by combining the BI-RADS with six morphological features. These features were the extent, overlap ratio, NRL entropy, circularity, elliptic-normalized circumference and the normalized residual value. The area under the receiver operating curve calculated with the use of the combined classifier was 0.986. The best performing morphological feature subset contained six features: the DWR, NRL entropy, normalized residual value, overlap ratio, extent and the morphological closing ratio. For this set, the area under the curve was 0.901. The combination of the radiologist's experience related to the BI-RADS and the morphological features leads to a more effective breast lesion classification.Comment: 7 pages, 3 figure

    BIRADS Features-Oriented Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis

    Full text link
    Breast ultrasound (US) is an effective imaging modality for breast cancer detection and diagnosis. US computer-aided diagnosis (CAD) systems have been developed for decades and have employed either conventional hand-crafted features or modern automatic deep-learned features, the former relying on clinical experience and the latter demanding large datasets. In this paper, we have developed a novel BIRADS-SDL network that integrates clinically-approved breast lesion characteristics (BIRADS features) into semi-supervised deep learning (SDL) to achieve accurate diagnoses with a small training dataset. Breast US images are converted to BIRADS-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of an SDL network, which performs unsupervised stacked convolutional auto-encoder (SCAE) image reconstruction guided by lesion classification. We trained the BIRADS-SDL network with an alternative learning strategy by balancing reconstruction error and classification label prediction error. We compared the performance of the BIRADS-SDL network with conventional SCAE and SDL methods that use the original images as inputs, as well as with an SCAE that use BFMs as inputs. Experimental results on two breast US datasets show that BIRADS-SDL ranked the best among the four networks, with classification accuracy around 92.00% and 83.90% on two datasets. These findings indicate that BIRADS-SDL could be promising for effective breast US lesion CAD using small datasets

    Automated Segmentation of Lesions in Ultrasound Using Semi-pixel-wise Cycle Generative Adversarial Nets

    Full text link
    Breast cancer is the most common invasive cancer with the highest cancer occurrence in females. Handheld ultrasound is one of the most efficient ways to identify and diagnose the breast cancer. The area and the shape information of a lesion is very helpful for clinicians to make diagnostic decisions. In this study we propose a new deep-learning scheme, semi-pixel-wise cycle generative adversarial net (SPCGAN) for segmenting the lesion in 2D ultrasound. The method takes the advantage of a fully connected convolutional neural network (FCN) and a generative adversarial net to segment a lesion by using prior knowledge. We compared the proposed method to a fully connected neural network and the level set segmentation method on a test dataset consisting of 32 malignant lesions and 109 benign lesions. Our proposed method achieved a Dice similarity coefficient (DSC) of 0.92 while FCN and the level set achieved 0.90 and 0.79 respectively. Particularly, for malignant lesions, our method increases the DSC (0.90) of the fully connected neural network to 0.93 significantly (p<<0.001). The results show that our SPCGAN can obtain robust segmentation results and may be used to relieve the radiologists' burden for annotation

    Semi-Automatic Segmentation and Ultrasonic Characterization of Solid Breast Lesions

    Full text link
    Characterization of breast lesions is an essential prerequisite to detect breast cancer in an early stage. Automatic segmentation makes this categorization method robust by freeing it from subjectivity and human error. Both spectral and morphometric features are successfully used for differentiating between benign and malignant breast lesions. In this thesis, we used empirical mode decomposition method for semi-automatic segmentation. Sonographic features like ehcogenicity, heterogeneity, FNPA, margin definition, Hurst coefficient, compactness, roundness, aspect ratio, convexity, solidity, form factor were calculated to be used as our characterization parameters. All of these parameters did not give desired comparative results. But some of them namely echogenicity, heterogeneity, margin definition, aspect ratio and convexity gave good results and were used for characterization

    Algorithm guided outlining of 105 pancreatic cancer liver metastases in Ultrasound

    Full text link
    Manual segmentation of hepatic metastases in ultrasound images acquired from patients suffering from pancreatic cancer is common practice. Semiautomatic measurements promising assistance in this process are often assessed using a small number of lesions performed by examiners who already know the algorithm. In this work, we present the application of an algorithm for the segmentation of liver metastases due to pancreatic cancer using a set of 105 different images of metastases. The algorithm and the two examiners had never assessed the images before. The examiners first performed a manual segmentation and, after five weeks, a semiautomatic segmentation using the algorithm. They were satisfied in up to 90% of the cases with the semiautomatic segmentation results. Using the algorithm was significantly faster and resulted in a median Dice similarity score of over 80%. Estimation of the inter-operator variability by using the intra class correlation coefficient was good with 0.8. In conclusion, the algorithm facilitates fast and accurate segmentation of liver metastases, comparable to the current gold standard of manual segmentation.Comment: 7 pages, 3 Figures, 3 Tables, 46 Reference

    Clinical utility of gadobenate dimeglumine in contrast-enhanced MRI of the breast: a review

    Get PDF
    Breast magnetic resonance imaging (MRI) is considered the technique with the highest sensitivity for breast cancer detection. Gadobenate dimeglumine is a gadolinium-based contrast agent (GBCA) that is specifically approved in Europe for breast MRI and which has the highest r1 relaxivity among all GBCAs for this indication. In order to improve the diagnostic performance of breast MRI, several intra-individual crossover studies have evaluated gadobenate dimeglumine as a possible GBCA for this application. This review focuses on the role and advantages of gadobenate dimeglumine as a contrast agent for breast MRI by describing the unique properties of this agent and by summarizing published studies

    SHEAR-net: An End-to-End Deep Learning Approach for Single Push Ultrasound Shear Wave Elasticity Imaging

    Full text link
    Ultrasound Shear Wave Elastography (USWE) with conventional B-mode imaging demonstrates better performance in lesion segmentation and classification problems. In this article, we propose SHEAR-net, an end-to-end deep neural network, to reconstruct USWE images from tracked tissue displacement data at different time instants induced by a single acoustic radiation force (ARF) with 100% or 50% of the energy in conventional use. The SHEAR-net consists of a localizer called the S-net to first localize the lesion location and then uses recurrent layers to extract temporal correlations from wave patterns using different time frames, and finally, with an estimator, it reconstructs the shear modulus image from the concatenated outputs of S-net and recurrent layers. The network is trained with 800 simulation and a limited number of CIRS tissue mimicking phantom data and is optimized using a multi-task learning loss function where the tasks are: inclusion localization and modulus estimation. The efficacy of the proposed SHEAR-net is extensively evaluated both qualitatively and quantitatively on 125 test set of motion data obtained from simulation and CIRS phantoms. We show that the proposed approach consistently outperforms the current state-of-the-art method and achieves overall 4-5 dB improvement in PSNR and SNR. In addition, an average gain of 0.15 in DSC and SSIM values indicate that the SHEAR-net has a better inclusion coverage area and structural similarity of the two approaches. The proposed real-time deep learning based technique can accurately estimate shear modulus for a minimum tissue displacement of 0.5μ\mum and image multiple inclusions with a single push ARF

    Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics

    Get PDF
    Near-infrared photoacoustic images of regions-of-interest in 4 of the 5 cases of patients with symptomatic breasts reveal higher intensity regions which we attribute to vascular distribution associated with cancer. Of the 2 cases presented here, one is especially significant where benign indicators dominate in conventional radiological images, while photoacoustic images reveal vascular features suggestive of malignancy, which is corroborated by histopathology. The results show that photoacoustic imaging may have potential in visualizing certain breast cancers based on intrinsic optical absorption contrast. A future role for the approach could be in supplementing conventional breast imaging to assist detection and/or diagnosis.\ud \u

    Radiological images and machine learning: trends, perspectives, and prospects

    Full text link
    The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently.Comment: 13 figure
    corecore