15,257 research outputs found

    Real-Time Salient Closed Boundary Tracking via Line Segments Perceptual Grouping

    Full text link
    This paper presents a novel real-time method for tracking salient closed boundaries from video image sequences. This method operates on a set of straight line segments that are produced by line detection. The tracking scheme is coherently integrated into a perceptual grouping framework in which the visual tracking problem is tackled by identifying a subset of these line segments and connecting them sequentially to form a closed boundary with the largest saliency and a certain similarity to the previous one. Specifically, we define a new tracking criterion which combines a grouping cost and an area similarity constraint. The proposed criterion makes the resulting boundary tracking more robust to local minima. To achieve real-time tracking performance, we use Delaunay Triangulation to build a graph model with the detected line segments and then reduce the tracking problem to finding the optimal cycle in this graph. This is solved by our newly proposed closed boundary candidates searching algorithm called "Bidirectional Shortest Path (BDSP)". The efficiency and robustness of the proposed method are tested on real video sequences as well as during a robot arm pouring experiment.Comment: 7 pages, 8 figures, The 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) submission ID 103

    Object Edge Contour Localisation Based on HexBinary Feature Matching

    Get PDF
    This paper addresses the issue of localising object edge contours in cluttered backgrounds to support robotics tasks such as grasping and manipulation and also to improve the potential perceptual capabilities of robot vision systems. Our approach is based on coarse-to-fine matching of a new recursively constructed hierarchical, dense, edge-localised descriptor, the HexBinary, based on the HexHog descriptor structure first proposed in [1]. Since Binary String image descriptors [2]– [5] require much lower computational resources, but provide similar or even better matching performance than Histogram of Orientated Gradient (HoG) descriptors, we have replaced the HoG base descriptor fields used in HexHog with Binary Strings generated from first and second order polar derivative approximations. The ALOI [6] dataset is used to evaluate the HexBinary descriptors which we demonstrate to achieve a superior performance to that of HexHoG [1] for pose refinement. The validation of our object contour localisation system shows promising results with correctly labelling ~86% of edgel positions and mis-labelling ~3%

    A Framework for Symmetric Part Detection in Cluttered Scenes

    Full text link
    The role of symmetry in computer vision has waxed and waned in importance during the evolution of the field from its earliest days. At first figuring prominently in support of bottom-up indexing, it fell out of favor as shape gave way to appearance and recognition gave way to detection. With a strong prior in the form of a target object, the role of the weaker priors offered by perceptual grouping was greatly diminished. However, as the field returns to the problem of recognition from a large database, the bottom-up recovery of the parts that make up the objects in a cluttered scene is critical for their recognition. The medial axis community has long exploited the ubiquitous regularity of symmetry as a basis for the decomposition of a closed contour into medial parts. However, today's recognition systems are faced with cluttered scenes, and the assumption that a closed contour exists, i.e. that figure-ground segmentation has been solved, renders much of the medial axis community's work inapplicable. In this article, we review a computational framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009, 2013), that bridges the representation power of the medial axis and the need to recover and group an object's parts in a cluttered scene. Our framework is rooted in the idea that a maximally inscribed disc, the building block of a medial axis, can be modeled as a compact superpixel in the image. We evaluate the method on images of cluttered scenes.Comment: 10 pages, 8 figure

    Traditional and new principles of perceptual grouping

    Get PDF
    Perceptual grouping refers to the process of determining which regions and parts of the visual scene belong together as parts of higher order perceptual units such as objects or patterns. In the early 20th century, Gestalt psychologists identified a set of classic grouping principles which specified how some image features lead to grouping between elements given that all other factors were held constant. Modern vision scientists have expanded this list to cover a wide range of image features but have also expanded the importance of learning and other non-image factors. Unlike early Gestalt accounts which were based largely on visual demonstrations, modern theories are often explicitly quantitative and involve detailed models of how various image features modulate grouping. Work has also been done to understand the rules by which different grouping principles integrate to form a final percept. This chapter gives an overview of the classic principles, modern developments in understanding them, and new principles and the evidence for them. There is also discussion of some of the larger theoretical issues about grouping such as at what stage of visual processing it occurs and what types of neural mechanisms may implement grouping principles
    • …
    corecore