57 research outputs found

    On Euclidean Steiner (1+?)-Spanners

    Get PDF
    Lightness and sparsity are two natural parameters for Euclidean (1+?)-spanners. Classical results show that, when the dimension d ? ? and ? > 0 are constant, every set S of n points in d-space admits an (1+?)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ? > 0 for constant d ? ? have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+?)-spanner. They gave upper bounds of O?(?^{-(d+1)/2}) for the minimum lightness in dimensions d ? 3, and O?(?^{-(d-1))/2}) for the minimum sparsity in d-space for all d ? 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+?)-spanners of lightness O(?^{-1}log?) in the plane, where ? ? ?(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+?)-spanners. Using a new geometric analysis, we establish lower bounds of ?(?^{-d/2}) for the lightness and ?(?^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ? 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+?)-spanners of lightness O(?^{-1}log n) for n points in Euclidean plane

    Light Euclidean Steiner Spanners in the Plane

    Full text link
    Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in Rd\mathbb{R}^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on ε>0\varepsilon>0 and dNd\in \mathbb{N} of the minimum lightness of (1+ε)(1+\varepsilon)-spanners, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+ε)(1+\varepsilon)-spanners of lightness O(ε1logΔ)O(\varepsilon^{-1}\log\Delta) in the plane, where ΔΩ(n)\Delta\geq \Omega(\sqrt{n}) is the \emph{spread} of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness O~(ε(d+1)/2)\tilde{O}(\varepsilon^{-(d+1)/2}) in dimensions d3d\geq 3. Recently, Bhore and T\'{o}th (2020) established a lower bound of Ω(εd/2)\Omega(\varepsilon^{-d/2}) for the lightness of Steiner (1+ε)(1+\varepsilon)-spanners in Rd\mathbb{R}^d, for d2d\ge 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d2d\geq 2. In this work, we show that for every finite set of points in the plane and every ε>0\varepsilon>0, there exists a Euclidean Steiner (1+ε)(1+\varepsilon)-spanner of lightness O(ε1)O(\varepsilon^{-1}); this matches the lower bound for d=2d=2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.Comment: 29 pages, 14 figures. A 17-page extended abstract will appear in the Proceedings of the 37th International Symposium on Computational Geometr

    Light Euclidean Spanners with Steiner Points

    Get PDF
    The FOCS'19 paper of Le and Solomon, culminating a long line of research on Euclidean spanners, proves that the lightness (normalized weight) of the greedy (1+ϵ)(1+\epsilon)-spanner in Rd\mathbb{R}^d is O~(ϵd)\tilde{O}(\epsilon^{-d}) for any d=O(1)d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}) (where O~\tilde{O} hides polylogarithmic factors of 1ϵ\frac{1}{\epsilon}), and also shows the existence of point sets in Rd\mathbb{R}^d for which any (1+ϵ)(1+\epsilon)-spanner must have lightness Ω(ϵd)\Omega(\epsilon^{-d}). Given this tight bound on the lightness, a natural arising question is whether a better lightness bound can be achieved using Steiner points. Our first result is a construction of Steiner spanners in R2\mathbb{R}^2 with lightness O(ϵ1logΔ)O(\epsilon^{-1} \log \Delta), where Δ\Delta is the spread of the point set. In the regime of Δ21/ϵ\Delta \ll 2^{1/\epsilon}, this provides an improvement over the lightness bound of Le and Solomon [FOCS 2019]; this regime of parameters is of practical interest, as point sets arising in real-life applications (e.g., for various random distributions) have polynomially bounded spread, while in spanner applications ϵ\epsilon often controls the precision, and it sometimes needs to be much smaller than O(1/logn)O(1/\log n). Moreover, for spread polynomially bounded in 1/ϵ1/\epsilon, this upper bound provides a quadratic improvement over the non-Steiner bound of Le and Solomon [FOCS 2019], We then demonstrate that such a light spanner can be constructed in Oϵ(n)O_{\epsilon}(n) time for polynomially bounded spread, where OϵO_{\epsilon} hides a factor of poly(1ϵ)\mathrm{poly}(\frac{1}{\epsilon}). Finally, we extend the construction to higher dimensions, proving a lightness upper bound of O~(ϵ(d+1)/2+ϵ2logΔ)\tilde{O}(\epsilon^{-(d+1)/2} + \epsilon^{-2}\log \Delta) for any 3d=O(1)3\leq d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}).Comment: 23 pages, 2 figures, to appear in ESA 2

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201
    corecore