10 research outputs found

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset

    Full text link
    Given a directed graph GG, a set of kk terminals and an integer pp, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set SS of at most pp (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where SS is a set of at most pp edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of kk given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by pp. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by pp. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time 22O(p)nO(1)2^{2^{O(p)}}n^{O(1)}, i.e., FPT parameterized by size pp of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of k=2k=2 terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011)

    Directed Graphs: Fixed-Parameter Tractability & Beyond

    Get PDF
    Most interesting optimization problems on graphs are NP-hard, implying that (unless P=NP) there is no polynomial time algorithm that solves all the instances of an NP-hard problem exactly. However, classical complexity measures the running time as a function of only the overall input size. The paradigm of parameterized complexity was introduced by Downey and Fellows to allow for a more refined multivariate analysis of the running time. In parameterized complexity, each problem comes along with a secondary measure k which is called the parameter. The goal of parameterized complexity is to design efficient algorithms for NP-hard problems when the parameter k is small, even if the input size is large. Formally, we say that a parameterized problem is fixed-parameter tractable (FPT) if instances of size n and parameter k can be solved in f(k).nO(1) time, where f is a computable function which does not depend on n. A parameterized problem belongs to the class XP if instances of size n and parameter k can be solved in f(k).nO(g(k)) time, where f and g are both computable functions. In this thesis we focus on the parameterized complexity of transversal and connectivity problems on directed graphs. This research direction has been hitherto relatively unexplored: usually the directed version of the problems require significantly different and more involved ideas than the ones for the undirected version. Furthermore, for directed graphs there are no known algorithmic meta-techniques: for example, there is no known algorithmic analogue of the Graph Minor Theory of Robertson and Seymour for directed graphs. As a result, the fixed-parameter tractability status of the directed versions of several fundamental problems such as Multiway Cut, Multicut, Subset Feedback Vertex Set, Odd Cycle Transversal, etc. was open. In the first part of the thesis, we develop the framework of shadowless solutions for a general class of transversal problems in directed graphs. For this class of problems, we reduce the problem of finding a solution in FPT time to that of finding a shadowless solution. Since shadowless solutions have a good (problem-specific) structure, this provides an important first step in the design of FPT algorithms for problems on directed graphs. By understanding the structure of shadowless solutions, we are able to design the first FPT algorithms for the Directed Multiway Cut problem and the Directed Subset Feedback Vertex Set problem. In the second part of the thesis, we present tight bounds on the parameterized complexity of well-studied directed connectivity problems such as Strongly Connected Steiner Subgraph and Directed Steiner Forest when parameterized by the number of terminals/terminal pairs. We design new optimal XP algorithms for the aforementioned problems, and also prove matching lower bounds for existing XP algorithms. Most of our hardness results hold even if the underlying undirected graph is planar. Finally, we conclude with some open problems regarding the parameterized complexity of transversal and connectivity problems on directed graphs

    Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable

    Get PDF
    Given a graph GG and an integer kk, the Feedback Vertex Set (FVS) problem asks if there is a vertex set TT of size at most kk that hits all cycles in the graph. The fixed-parameter tractability status of FVS in directed graphs was a long-standing open problem until Chen et al. (STOC '08) showed that it is FPT by giving a 4kk!nO(1)4^{k}k!n^{O(1)} time algorithm. In the subset versions of this problems, we are given an additional subset SS of vertices (resp., edges) and we want to hit all cycles passing through a vertex of SS (resp. an edge of SS). Recently, the Subset Feedback Vertex Set in undirected graphs was shown to be FPT by Cygan et al. (ICALP '11) and independently by Kakimura et al. (SODA '12). We generalize the result of Chen et al. (STOC '08) by showing that Subset Feedback Vertex Set in directed graphs can be solved in time 2O(k3)nO(1)2^{O(k^3)}n^{O(1)}. By our result, we complete the picture for feedback vertex set problems and their subset versions in undirected and directed graphs. Besides proving the fixed-parameter tractability of Directed Subset Feedback Vertex Set, we reformulate the random sampling of important separators technique in an abstract way that can be used for a general family of transversal problems. Moreover, we modify the probability distribution used in the technique to achieve better running time; in particular, this gives an improvement from 22O(k)2^{2^{O(k)}} to 2O(k2)2^{O(k^2)} in the parameter dependence of the Directed Multiway Cut algorithm of Chitnis et al. (SODA '12).Comment: To appear in ACM Transactions on Algorithms. A preliminary version appeared in ICALP '12. We would like to thank Marcin Pilipczuk for pointing out a missing case in the conference version which has been considered in this version. Also, we give an single exponential FPT algorithm improving on the double exponential algorithm from the conference versio

    Fixed-Parameter Tractability of Directed Multicut with Three Terminal Pairs Parameterized by the Size of the Cutset: Twin-width Meets Flow-Augmentation

    Get PDF
    We show fixed-parameter tractability of the Directed Multicut problem withthree terminal pairs (with a randomized algorithm). This problem, given adirected graph GG, pairs of vertices (called terminals) (s1,t1)(s_1,t_1),(s2,t2)(s_2,t_2), and (s3,t3)(s_3,t_3), and an integer kk, asks to find a set of at mostkk non-terminal vertices in GG that intersect all s1t1s_1t_1-paths, alls2t2s_2t_2-paths, and all s3t3s_3t_3-paths. The parameterized complexity of thiscase has been open since Chitnis, Cygan, Hajiaghayi, and Marx provedfixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, andPilipczuk and Wahlstr\"{o}m proved the W[1]-hardness of the 4-terminal-pairscase at SODA 2016. On the technical side, we use two recent developments in parameterizedalgorithms. Using the technique of directed flow-augmentation [Kim, Kratsch,Pilipczuk, Wahlstr\"{o}m, STOC 2022] we cast the problem as a CSP problem withfew variables and constraints over a large ordered domain.We observe that thisproblem can be in turn encoded as an FO model-checking task over a structureconsisting of a few 0-1 matrices. We look at this problem through the lenses oftwin-width, a recently introduced structural parameter [Bonnet, Kim,Thomass\'{e}, Watrigant, FOCS 2020]: By a recent characterization [Bonnet,Giocanti, Ossona de Mendes, Simon, Thomass\'{e}, Toru\'{n}czyk, STOC 2022] thesaid FO model-checking task can be done in FPT time if the said matrices havebounded grid rank. To complete the proof, we show an irrelevant vertex rule: Ifany of the matrices in the said encoding has a large grid minor, a vertexcorresponding to the ``middle'' box in the grid minor can be proclaimedirrelevant -- not contained in the sought solution -- and thus reduced.<br

    Fixed-parameter tractability of Directed Multicut with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation

    Full text link
    We show fixed-parameter tractability of the Directed Multicut problem with three terminal pairs (with a randomized algorithm). This problem, given a directed graph GG, pairs of vertices (called terminals) (s1,t1)(s_1,t_1), (s2,t2)(s_2,t_2), and (s3,t3)(s_3,t_3), and an integer kk, asks to find a set of at most kk non-terminal vertices in GG that intersect all s1t1s_1t_1-paths, all s2t2s_2t_2-paths, and all s3t3s_3t_3-paths. The parameterized complexity of this case has been open since Chitnis, Cygan, Hajiaghayi, and Marx proved fixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, and Pilipczuk and Wahlstr\"{o}m proved the W[1]-hardness of the 4-terminal-pairs case at SODA 2016. On the technical side, we use two recent developments in parameterized algorithms. Using the technique of directed flow-augmentation [Kim, Kratsch, Pilipczuk, Wahlstr\"{o}m, STOC 2022] we cast the problem as a CSP problem with few variables and constraints over a large ordered domain.We observe that this problem can be in turn encoded as an FO model-checking task over a structure consisting of a few 0-1 matrices. We look at this problem through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim, Thomass\'{e}, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona de Mendes, Simon, Thomass\'{e}, Toru\'{n}czyk, STOC 2022] the said FO model-checking task can be done in FPT time if the said matrices have bounded grid rank. To complete the proof, we show an irrelevant vertex rule: If any of the matrices in the said encoding has a large grid minor, a vertex corresponding to the ``middle'' box in the grid minor can be proclaimed irrelevant -- not contained in the sought solution -- and thus reduced

    Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set

    Get PDF
    The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph~GG and seeks a smallest vertex set~SS that hits all cycles in GG. This is one of Karp's 21 NP\mathsf{NP}-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. [STOC 2008, J. ACM 2008] showed its fixed-parameter tractability via a 4kk!nO(1)4^kk! n^{\mathcal{O}(1)}-time algorithm, where k=∣S∣k = |S|. Here we show fixed-parameter tractability of two generalizations of DFVS: - Find a smallest vertex set SS such that every strong component of G−SG - S has size at most~ss: we give an algorithm solving this problem in time 4k(ks+k+s)!⋅nO(1)4^k(ks+k+s)!\cdot n^{\mathcal{O}(1)}. This generalizes an algorithm by Xiao [JCSS 2017] for the undirected version of the problem. - Find a smallest vertex set SS such that every non-trivial strong component of G−SG - S is 1-out-regular: we give an algorithm solving this problem in time 2O(k3)⋅nO(1)2^{\mathcal{O}(k^3)}\cdot n^{\mathcal{O}(1)}. We also solve the corresponding arc versions of these problems by fixed-parameter algorithms

    Shadowless Solutions for Fixed-Parameter Tractability of Directed Graphs

    No full text
    corecore