78 research outputs found

    人体・多重波相互作用影響下におけるウェアラブルアンテナのOver-The-Air設計方法論

    Get PDF
    富山大学・富理工博甲第120号・李鯤・2017/03/23富山大学201

    From Radio Channel Modeling to a System Level Perspective in Body-Centric Communications

    Get PDF
    Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources

    Characterization of dynamic wireless body area network channels during walking

    Get PDF
    In this work, finite-difference time-domain was used for the investigation of dynamic wireless body area network channel characteristics during walking, thus accounting for dynamic aspects and body postures. This involves the study of on-body, off-body, and body-to-body communication in an empty environment, at the center frequency of 2.45 GHz. The channels were investigated in terms of fade variation and their corresponding amplitude distributions. For on-body channels, the fade variation was found to be periodic, with larger fade variations for the channels involving the nodes at the hand and thigh. For off-body and body-to-body channels, channels with the absence of line of sight experienced constructive and destructive interference as the distance between the end nodes changes, resulting in larger fade variations. For the amplitude distribution of the channels, a multivariate normal distribution was considered. The distribution has the capability of modeling channels jointly which makes it easier for network analysis and was considered because of the significant correlation between the channels. The resulting estimated multivariate distributions fit well with the simulated data, for on-body, off-body, and body-to-body channels

    Body-centric wireless communications: wearable antennas, channel modelling, and near-field antenna measurements

    Get PDF
    This thesis provides novel contribution to the field of body-centric wireless communications (BCWC) with the development of a measurement methodology for wearable antenna characterisation on the human body, the implementation of fully-textile wearable antennas and the on-body channel modelling considering different antenna types and user's dynamic effects. More specifically, a measurement methodology is developed for characterising wearable antennas on different locations of the human body. A cylindrical near-field (CNF) technique is employed, which facilitates wearable antenna measurements on a full-body solid anthropomorphic mannequin (SAM) phantom. This technique allows the fast extraction of the full spherical radiation pattern and the corresponding radiation efficiency, which is an important parameter for optimising wearable system design. It appears as a cost- effective and easy to implement solution that does not require expensive positioning systems to rotate the phantom, in contrast to conventional roll-over-azimuth far-field systems. Furthermore, a flexible fully-textile wearable antenna is designed, fabricated and measured at 2.4 GHz that can be easily integrated in smart clothing. It supports surface wave propagation and exhibits an omni-directional radiation pattern that makes it suitable for on-body communications. It is based on a multilayer low-profile higher-mode patch antenna (HMMPA) design with embroidered shorting vias. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that play an important role in generating the optimal mode for on-body radiation. The radiation pattern shape of the proposed fully-textile antenna was found to be similar to a copper rigid antenna, exhibiting a high on-body radiation efficiency of 50 %. The potential of the embroidery technique for creating wearable antennas is also demonstrated with the fabrication of a circularly polarised spiral antenna that achieves a broadband performance from 0.9-3 GHz, which is suitable for off-body communications. By testing the textile spiral antenna on the SAM phantom, the antenna-body interaction is examined in a wide frequency range. Finally, a statistical characterisation of on-body communication channels is undertaken both with EM simulations and channel measurements including user's dynamic movement (walking and running). By using antenna types of different polarisation, the on-body channels are examined for different propagation conditions. Four on-body channels are examined with the one part fixed on the waist of the human body while the other part located on the chest, back, wrist and foot. Channel path gain is derived, while large-scale and small-scale fading are modelled by best-fit statistical distributions

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Analysis and Design of Footwear Antennas

    Get PDF
    Wearable technologies are found in an increasing number of applications including sport and medical monitoring, gaming and consumer electronics. Sensors are used to monitor vital signs and are located on various parts of the body. Footwear sensors permit the collection of data relating to gait, running style, physiotherapy and research. The data is sent from sensors to on-body hubs, often using wired technology, which can impact gait characteristics. This thesis describes the design of footwear antennas for wireless sensor telemetry. The work addresses the challenges of placing antennas close to the foot as well as the proximity to the ground. Guidelines for polarization are presented. The channel link between footwear and wrist is investigated for both narrowband and wideband channels across different frequencies. The effects of the body proximity and movement were gauged for walking subjects and are described in terms of the Rician Distribution K-factor. Different antenna solutions are presented including UWB antennas on various footwear locations as well as 433 MHz integrated antennas in the insole. Both directional and omnidirectional antennas were considered for UWB and the evaluation was for both time-domain and frequencydomain. The research established new ideas that challenge the old paradigm of the waist as the best hub position, demonstrating that a hub on the footwear using directional antennas outperforms a hub on the waist using an omnidirectional antenna. The cumulative distribution functions of measured path gains are evaluated and the results are described in terms of the achievable minimum data rate considering the Body Area Network standard

    Caractérisation du canal de propagation BAN dans un milieu minier

    Get PDF
    Le Body Area Network (BAN) est une technologie de réseau sans fil qui consiste à interconnecter, autour ou sur le corps humain des transmetteurs et des récepteurs afin d’établir une communication sans fil, impliquant le corps humain. À titre d’exemple, ces composants électroniques utilisant des courants de très faible puissance pourraient communiquer avec un centre de commande distant, pour alerter un service d'urgence. Les applications se trouvent principalement dans les domaines de la santé, militaire, et divertissement. Cette technologie (BAN) pourrait être appliquée davantage dans un environnement minier en raison de sa simplicité et sa capacité à fournir des informations utiles telles que la surveillance de l'environnement ou d’état de santé des employés. En effet, les mineurs sont exposés quotidiennement à un certain nombre de risques qui affecte leurs santés. Dans le cadre de ce projet, nous proposons un système BAN efficace qui sera à la fois rentable et simple à utiliser dans une mine souterraine. Ce projet de recherche consiste à déterminer, à la fréquence 2,4 GHz du standard IEEE 802.11, les performances des systèmes de communication SISO (Single Input Single Output) et MIMO (Multiple Input Multiple Output) pour les canaux BAN, en termes de l’étalement des retards (RMS delay spread), l’affaiblissement de parcours, la bande de cohérence et la capacité du canal. Afin d’atteindre ces objectifs, une campagne de mesure a été effectuée dans une galerie de la mine CANMET (niveau 40m) en ligne de vue directe (LOS) et en ligne de vue indirecte (NLOS) en utilisant les topologies SISO et MIMO. The Body Area Network (BAN) is a wireless networking technology that consists in interconnecting, on or around the human body, transmitters and receivers to establish wireless communication. For example, electronic components, mounted on the human body, using very low power could communicate with a remote control center to alert an emergency service. The BAN applications are mainly found in the areas of health, military, and entertainment. This technology (BAN) could be applied in a mining environment because of its simplicity and its ability to provide useful information such as environmental conditions and employees’ health status data. In fact, the miners are exposed daily to a number of risks that affect their health. As part of this project, we propose an efficient BAN system ,dedicated to the security of the miners, that is both cost effective and easy to use in an underground mine. This research project consists in determining, at the 2.4 GHz frequency of the IEEE 802.11 standard, the performance of the SISO and MIMO communication systems for BAN channels, in terms of the RMS delay spread, the path loss, the coherence bandwidth and the channel capacity. In order to achieve these objectives, measurement campaigns were carried out in the CANMET mine gallery (40m level) in line of sight (LOS) and no line of sight (NLOS) using SISO and MIMO topologies

    On Application of Wireless Sensor Networks for Healthcare Monitoring

    Get PDF
    With the recent advances in embedded systems and very low power ,wireless tech­ nologies, there has been a great interest in the development and application of a new class of distributed Wireless body area network for health monitoring. The first part of the thesis presents a remote patient monitoring system within the scope of Body Area Network standardization. In this regime, wireless sensor networks are used to continuously acquire the patient’s Electrocardiogram signs and transmit data to the base station via IEEE.802.15. The personal Server (PS) which is responsible to provide real-time displaying, storing, and analyzing the patient’s vital signs is developed in MATLAB. It also transfers ECG streams in real-time to a remote client such as a physician or medical center through internet. The PS has the potential to be integrated with home or hospital computer systems. A prototype of this system has been developed and implemented. Tlie developed system takes advantage of two important features for healthcare monitoring: (i) ECG data acqui­ sition using wearable sensors and (ii) real-time data remote through internet. The fact that our system is interacting with sensor network nodes using MATLAB makes it distinct from other previous works. The second part is devoted to the study of indoor body-area channel model for 2.4 GHz narrowband communications. To un­ derstand the narrowband radio propagation near the body, several measurements are carried out in two separate environments for different on body locations. On the basis of these measurements, we have characterized the fading statistics on body links and we have provided a physical interpretation of our results

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance
    corecore