49,251 research outputs found

    Shadow Techniques for Interactive and Real-Time Applications

    Get PDF
    Shadows provide important visual cues for the relative position of objects in threedimensional space. For interactive and real-time applications, e.g. in virtual reality systems or games, the shadow computation needs to be extremely fast, usually synchronized with the displays refresh rate. Using dynamic scenes with many, movable light sources, shadow computation is therefore often the main bottleneck in a rendering system. In this thesis we will discuss this problem in detail: Originating from Williams shadow maps and Crows shadow volumes, we will present hardware accelerated shadow techniques that are able to generate shadows of high-quality while still being fast enough to be used in real-time or interactive applications. We will show algorithms for the computation of hard shadows as well as for the more complex problem of approximating soft shadows caused by area light sources.Schatten sind wichtige visuelle Merkmale die Ć¼ber die relative Position eines Objektes in einem drei-dimensionalen Raum Aufschluss geben. Die Schattenberechnung muss fĆ¼r interaktive und Echtzeit-Anwendungen, wie z.B. Virtual Reality Systeme oder in Spielen, extrem schnell erfolgen, idealerweise synchronisiert mit der Bildwiederholfrequenz. Im Fall von dynamischen Szenen mit vielen, beweglichen Lichtquellen, ist die Berechnung von Schatten oftmals der zeitkritischste Teil innerhalb eines Rendering-Systems. In dieser Dissertation behandeln wir genau dieses Problem im Detail. Ausgehend vonWilliams\u27; Shadow Maps und Crow\u27;s Shadow Volumes werden Hardwarebeschleunigte Schattentechniken vorgestellt, die Schatten von hoher QualitƤt erzeugen kƶnnen, aber trotzdem so effizient sind, dass sie fĆ¼r Echtzeit- und interaktive Anwendungen eingesetzt werden kƶnnen. Wir werden sowohl Algorithmen zur Berechnung harter Schatten beschreiben, als auch das schwierigere Problem der Approximation von sanften Schatten, wie sie z.B. bei FlƤchenlichtquellen entstehen, behandeln

    Master of Science in Computing

    Get PDF
    thesisThis document introduces the Soft Shadow Mip-Maps technique, which consists of three methods for overcoming the fundamental limitations of filtering-oriented soft shadows. Filtering-oriented soft shadowing techniques filter shadow maps with varying filter sizes determined by desired penumbra widths. Different varieties of this approach have been commonly applied in interactive and real-time applications. Nonetheless, they share some fundamental limitations. First, soft shadow filter size is not always guaranteed to be the correct size for producing the right penumbra width based on the light source size. Second, filtering with large kernels for soft shadows requires a large number of samples, thereby increasing the cost of filtering. Stochastic approximations for filtering introduce noise and prefiltering leads to inaccuracies. Finally, calculating shadows based on a single blocker estimation can produce significantly inaccurate penumbra widths when the shadow penumbras of different blockers overlap. We discuss three methods to overcome these limitations. First, we introduce a method for computing the soft shadow filter size for a receiver with a blocker distance. Then, we present a filtering scheme based on shadow mip-maps. Mipmap-based filtering uses shadow mip-maps to efficiently generate soft shadows using a constant size filter kernel for each layer, and linear interpolation between layers. Finally, we introduce an improved blocker estimation approach. With the improved blocker estimaiton, we explore the shadow contribution of every blocker by calculating the light occluded by potential blockers. Hence, the calculated penumbra areas correspond to the blockers correctly. Finally, we discuss how to select filter kernels for filtering. These approaches successively solve issues regarding shadow penumbra width calculation apparent in prior techniques. Our result shows that we can produce correct penumbra widths, as evident in our comparisons to ray-traced soft shadows. Nonetheless, the Soft Shadow Mip-Maps technique suffers from light bleeding issues. This is because our method only calculates shadows using the geometry that is available in the shadow depth map. Therefore, the occluded geometry is not taken into consideration, which leads to light bleeding. Another limitation of our method is that using lower resolution shadow mip-map layers limits the resolution of the shadow placement. As a result, when a blocker moves slowly, its shadow follows it with discrete steps, the size of which is determined by the corresponding mip-map layer resolution

    Smoke and Shadows: Rendering and Light Interaction of Smoke in Real-Time Rendered Virtual Environments

    Get PDF
    Realism in computer graphics depends upon digitally representing what we see in the world with careful attention to detail, which usually requires a high degree of complexity in modelling the scene. The inevitable trade-off between realism and performance means that new techniques that aim to improve the visual fidelity of a scene must do so without compromising the real-time rendering performance. We describe and discuss a simple method for realistically casting shadows from an opaque solid object through a GPU (graphics processing unit) based particle system representing natural phenomena, such as smoke

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Dynamic Illumination for Augmented Reality with Real-Time Interaction

    Get PDF
    Current augmented and mixed reality systems suffer a lack of correct illumination modeling where the virtual objects render the same lighting condition as the real environment. While we are experiencing astonishing results from the entertainment industry in multiple media forms, the procedure is mostly accomplished offline. The illumination information extracted from the physical scene is used to interactively render the virtual objects which results in a more realistic output in real-time. In this paper, we present a method that detects the physical illumination with dynamic scene, then uses the extracted illumination to render the virtual objects added to the scene. The method has three steps that are assumed to be working concurrently in real-time. The first is the estimation of the direct illumination (incident light) from the physical scene using computer vision techniques through a 360Ā° live-feed camera connected to AR device. The second is the simulation of indirect illumination (reflected light) from the real-world surfaces to virtual objects rendering using region capture of 2D texture from the AR camera view. The third is defining the virtual objects with proper lighting and shadowing characteristics using shader language through multiple passes. Finally, we tested our work with multiple lighting conditions to evaluate the accuracy of results based on the shadow falling from the virtual objects which should be consistent with the shadow falling from the real objects with a reduced performance cost

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any productā€™s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • ā€¦
    corecore