3,065 research outputs found

    A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning

    Get PDF
    Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to queue estimation, speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a total of 70 research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the preferable way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Networks (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach

    Detecting, Tracking, And Recognizing Activities In Aerial Video

    Get PDF
    In this dissertation, we address the problem of detecting humans and vehicles, tracking them in crowded scenes, and finally determining their activities in aerial video. Even though this is a well explored problem in the field of computer vision, many challenges still remain when one is presented with realistic data. These challenges include large camera motion, strong scene parallax, fast object motion, large object density, strong shadows, and insufficiently large action datasets. Therefore, we propose a number of novel methods based on exploiting scene constraints from the imagery itself to aid in the detection and tracking of objects. We show, via experiments on several datasets, that superior performance is achieved with the use of proposed constraints. First, we tackle the problem of detecting moving, as well as stationary, objects in scenes that contain parallax and shadows. We do this on both regular aerial video, as well as the new and challenging domain of wide area surveillance. This problem poses several challenges: large camera motion, strong parallax, large number of moving objects, small number of pixels on target, single channel data, and low frame-rate of video. We propose a method for detecting moving and stationary objects that overcomes these challenges, and evaluate it on CLIF and VIVID datasets. In order to find moving objects, we use median background modelling which requires few frames to obtain a workable model, and is very robust when there is a large number of moving objects in the scene while the model is being constructed. We then iii remove false detections from parallax and registration errors using gradient information from the background image. Relying merely on motion to detect objects in aerial video may not be sufficient to provide complete information about the observed scene. First of all, objects that are permanently stationary may be of interest as well, for example to determine how long a particular vehicle has been parked at a certain location. Secondly, moving vehicles that are being tracked through the scene may sometimes stop and remain stationary at traffic lights and railroad crossings. These prolonged periods of non-motion make it very difficult for the tracker to maintain the identities of the vehicles. Therefore, there is a clear need for a method that can detect stationary pedestrians and vehicles in UAV imagery. This is a challenging problem due to small number of pixels on the target, which makes it difficult to distinguish objects from background clutter, and results in a much larger search space. We propose a method for constraining the search based on a number of geometric constraints obtained from the metadata. Specifically, we obtain the orientation of the ground plane normal, the orientation of the shadows cast by out of plane objects in the scene, and the relationship between object heights and the size of their corresponding shadows. We utilize the above information in a geometry-based shadow and ground plane normal blob detector, which provides an initial estimation for the locations of shadow casting out of plane (SCOOP) objects in the scene. These SCOOP candidate locations are then classified as either human or clutter using a combination of wavelet features, and a Support Vector Machine. Additionally, we combine regular SCOOP and inverted SCOOP candidates to obtain vehicle candidates. We show impressive results on sequences from VIVID and CLIF datasets, and provide comparative quantitative and qualitative analysis. We also show that we can extend the SCOOP detection method to automatically estimate the iv orientation of the shadow in the image without relying on metadata. This is useful in cases where metadata is either unavailable or erroneous. Simply detecting objects in every frame does not provide sufficient understanding of the nature of their existence in the scene. It may be necessary to know how the objects have travelled through the scene over time and which areas they have visited. Hence, there is a need to maintain the identities of the objects across different time instances. The task of object tracking can be very challenging in videos that have low frame rate, high density, and a very large number of objects, as is the case in the WAAS data. Therefore, we propose a novel method for tracking a large number of densely moving objects in an aerial video. In order to keep the complexity of the tracking problem manageable when dealing with a large number of objects, we divide the scene into grid cells, solve the tracking problem optimally within each cell using bipartite graph matching and then link the tracks across the cells. Besides tractability, grid cells also allow us to define a set of local scene constraints, such as road orientation and object context. We use these constraints as part of cost function to solve the tracking problem; This allows us to track fast-moving objects in low frame rate videos. In addition to moving through the scene, the humans that are present may be performing individual actions that should be detected and recognized by the system. A number of different approaches exist for action recognition in both aerial and ground level video. One of the requirements for the majority of these approaches is the existence of a sizeable dataset of examples of a particular action from which a model of the action can be constructed. Such a luxury is not always possible in aerial scenarios since it may be difficult to fly a large number of missions to observe a particular event multiple times. Therefore, we propose a method for v recognizing human actions in aerial video from as few examples as possible (a single example in the extreme case). We use the bag of words action representation and a 1vsAll multi-class classification framework. We assume that most of the classes have many examples, and construct Support Vector Machine models for each class. Then, we use Support Vector Machines that were trained for classes with many examples to improve the decision function of the Support Vector Machine that was trained using few examples, via late weighted fusion of decision values

    Moving cast shadows detection methods for video surveillance applications

    Get PDF
    Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (’shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).Peer Reviewe

    A mathematical model for computerized car crash detection using computer vision techniques

    Full text link
    My proposed approach to the automatic detection of traffic accidents in a signalized intersection is presented here. In this method, a digital camera is strategically placed to view the entire intersection. The images are captured, processed and analyzed for the presence of vehicles and pedestrians in the proposed detection zones. Those images are further processed to detect if an accident has occurred; The mathematical model presented is a Poisson distribution that predicts the number of accidents in an intersection per week, which can be used as approximations for modeling the crash process. We believe that the crash process can be modeled by using a two-state method, which implies that the intersection is in one of two states: clear (no accident) or obstructed (accident). We can then incorporate a rule-based AI system, which will help us in identifying that a crash has taken or will possibly take place; We have modeled the intersection as a service facility, which processes vehicles in a relatively small amount of time. A traffic accident is then perceived as an interruption of that service

    Real-time Foreground Object Detection Combining the PBAS Background Modelling Algorithm and Feedback from Scene Analysis Module

    Get PDF
    The article presents a hardware implementation of the foreground object detection algorithm PBAS (Pixel-Based Adaptive Segmenter) with a scene analysis module. A mechanism for static object detection is proposed, which is based on consecutive frame differencing. The method allows to distinguish stopped foreground objects (e.g. a car at the intersection, abandoned luggage) from false detections (so-called ghosts) using edge similarity. The improved algorithm was compared with the original version on popular test sequences from the changedetection.net dataset. The obtained results indicate that the proposed approach allows to improve the performance of the method for sequences with the stopped objects. The algorithm has been implemented and successfully verified on a hardware platform with Virtex 7 FPGA device. The PBAS segmentation, consecutive frame differencing, Sobel edge detection and advanced one-pass connected component analysis modules were designed. The system is capable of processing 50 frames with a resolution of 720 × 576 pixels per second.

    Intelligent surveillance system for street surveillance

    Get PDF
    CCTV surveillance systems are widely used as a street monitoring tool in public and private areas. This paper presents a novel approach of an intelligent surveillance system that consists of adaptive background modelling, optimal trade-off features tracking and detected moving objects classification. The proposed system is designed to work in real-time. Experimental results show that the proposed background modelling algorithms are able to reconstruct the background correctly and handle illumination and adverse weather that modifies the background. For the tracking algorithm, the effectiveness between colour, edge and texture features for target and candidate blobs were analysed. Finally, it is also demonstrated that the proposed object classification algorithm performs well with different classes of moving objects such as, cars, motorcycles and pedestrians

    Object Tracking in Distributed Video Networks Using Multi-Dimentional Signatures

    Get PDF
    From being an expensive toy in the hands of governmental agencies, computers have evolved a long way from the huge vacuum tube-based machines to today\u27s small but more than thousand times powerful personal computers. Computers have long been investigated as the foundation for an artificial vision system. The computer vision discipline has seen a rapid development over the past few decades from rudimentary motion detection systems to complex modekbased object motion analyzing algorithms. Our work is one such improvement over previous algorithms developed for the purpose of object motion analysis in video feeds. Our work is based on the principle of multi-dimensional object signatures. Object signatures are constructed from individual attributes extracted through video processing. While past work has proceeded on similar lines, the lack of a comprehensive object definition model severely restricts the application of such algorithms to controlled situations. In conditions with varying external factors, such algorithms perform less efficiently due to inherent assumptions of constancy of attribute values. Our approach assumes a variable environment where the attribute values recorded of an object are deemed prone to variability. The variations in the accuracy in object attribute values has been addressed by incorporating weights for each attribute that vary according to local conditions at a sensor location. This ensures that attribute values with higher accuracy can be accorded more credibility in the object matching process. Variations in attribute values (such as surface color of the object) were also addressed by means of applying error corrections such as shadow elimination from the detected object profile. Experiments were conducted to verify our hypothesis. The results established the validity of our approach as higher matching accuracy was obtained with our multi-dimensional approach than with a single-attribute based comparison

    Pedestrian Detection and Tracking in Video Surveillance System: Issues, Comprehensive Review, and Challenges

    Get PDF
    Pedestrian detection and monitoring in a surveillance system are critical for numerous utility areas which encompass unusual event detection, human gait, congestion or crowded vicinity evaluation, gender classification, fall detection in elderly humans, etc. Researchers’ primary focus is to develop surveillance system that can work in a dynamic environment, but there are major issues and challenges involved in designing such systems. These challenges occur at three different levels of pedestrian detection, viz. video acquisition, human detection, and its tracking. The challenges in acquiring video are, viz. illumination variation, abrupt motion, complex background, shadows, object deformation, etc. Human detection and tracking challenges are varied poses, occlusion, crowd density area tracking, etc. These results in lower recognition rate. A brief summary of surveillance system along with comparisons of pedestrian detection and tracking technique in video surveillance is presented in this chapter. The publicly available pedestrian benchmark databases as well as the future research directions on pedestrian detection have also been discussed
    corecore