405 research outputs found

    Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks

    Full text link
    Satellite images hold great promise for continuous environmental monitoring and earth observation. Occlusions cast by clouds, however, can severely limit coverage, making ground information extraction more difficult. Existing pipelines typically perform cloud removal with simple temporal composites and hand-crafted filters. In contrast, we cast the problem of cloud removal as a conditional image synthesis challenge, and we propose a trainable spatiotemporal generator network (STGAN) to remove clouds. We train our model on a new large-scale spatiotemporal dataset that we construct, containing 97640 image pairs covering all continents. We demonstrate experimentally that the proposed STGAN model outperforms standard models and can generate realistic cloud-free images with high PSNR and SSIM values across a variety of atmospheric conditions, leading to improved performance in downstream tasks such as land cover classification.Comment: Accepted to WACV 202

    Weakly Supervised Learning for Multi-Image Synthesis

    Get PDF
    Machine learning-based approaches have been achieving state-of-the-art results on many computer vision tasks. While deep learning and convolutional networks have been incredibly popular, these approaches come at the expense of huge amounts of labeled data required for training. Manually annotating large amounts of data, often millions of images in a single dataset, is costly and time consuming. To deal with the problem of data annotation, the research community has been exploring approaches that require less amount of labelled data. The central problem that we consider in this research is image synthesis without any manual labeling. Image synthesis is a classic computer vision task that requires understanding of image contents and their semantic and geometric properties. We propose that we can train image synthesis models by relying on sequences of videos and using weakly supervised learning. Large amounts of unlabeled data are freely available on the internet. We propose to set up the training in a multi-image setting so that we can use one of the images as the target - this allows us to rely only on images for training and removes the need for manual annotations. We demonstrate three main contributions in this work. First, we present a method of fusing multiple noisy overhead images to make a single, artifact-free image. We present a weakly supervised method that relies on crowd-sourced labels from online maps and a completely unsupervised variant that only requires a series of satellite images as inputs. Second, we propose a single-image novel view synthesis method for complex, outdoor scenes. We propose a learning-based method that uses pairs of nearby images captured on urban roads and their respective GPS coordinates as supervision. We show that a model trained with this automatically captured data can render a new view of a scene that can be as far as 10 meters from the input image. Third, we consider the problem of synthesizing new images of a scene under different conditions, such as time of day and season, based on a single input image. As opposed to existing methods, we do not need manual annotations for transient attributes, such as fog or snow, for training. We train our model by using streams of images captured from outdoor webcams and time-lapse videos. Through these applications, we show several settings where we can train state-of-the-art deep learning methods without manual annotations. This work focuses on three image synthesis tasks. We propose weakly supervised learning and remove requirements for manual annotations by relying on sequences of images. Our approach is in line with the research efforts that aim to minimize the labels required for training machine learning methods

    Cloud Removal in Sentinel-2 Imagery using a Deep Residual Neural Network and SAR-Optical Data Fusion

    Get PDF
    Optical remote sensing imagery is at the core of many Earth observation activities. The regular, consistent and global-scale nature of the satellite data is exploited in many applications, such as cropland monitoring, climate change assessment, land-cover and land-use classification, and disaster assessment. However, one main problem severely affects the temporal and spatial availability of surface observations, namely cloud cover. The task of removing clouds from optical images has been subject of studies since decades. The advent of the Big Data era in satellite remote sensing opens new possibilities for tackling the problem using powerful data-driven deep learning methods. In this paper, a deep residual neural network architecture is designed to remove clouds from multispectral Sentinel-2 imagery. SAR-optical data fusion is used to exploit the synergistic properties of the two imaging systems to guide the image reconstruction. Additionally, a novel cloud-adaptive loss is proposed to maximize the retainment of original information. The network is trained and tested on a globally sampled dataset comprising real cloudy and cloud-free images. The proposed setup allows to remove even optically thick clouds by reconstructing an optical representation of the underlying land surface structure

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF
    • …
    corecore