3,518 research outputs found

    User-Assisted Image Shadow Removal

    Get PDF
    This paper presents a novel user-aided method for texture-preserving shadow removal from single images requiring simple user input. Compared with the state-of-the-art, our algorithm offers the most flexible user interaction to date and produces more accurate and robust shadow removal under thorough quantitative evaluation. Shadow masks are first detected by analysing user specified shadow feature strokes. Sample intensity profiles with variable interval and length around the shadow boundary are detected next, which avoids artefacts raised from uneven boundaries. Texture noise in samples is then removed by applying local group bilateral filtering, and initial sparse shadow scales are estimated by fitting a piece-wise curve to intensity samples. The remaining errors in estimated sparse scales are removed by local group smoothing. To relight the image, a dense scale field is produced by in-painting the sparse scales. Finally, a gradual colour correction is applied to remove artefacts due to image post-processing. Using state-of-the-art evaluation data, we quantitatively and qualitatively demonstrate our method to outperform current leading shadow removal methods

    Flash Photography Enhancement via Intrinsic Relighting

    Get PDF
    We enhance photographs shot in dark environments by combining a picture taken with the available light and one taken with the flash. We preserve the ambiance of the original lighting and insert the sharpness from the flash image. We use the bilateral filter to decompose the images into detail and large scale. We reconstruct the image using the large scale of the available lighting and the detail of the flash. We detect and correct flash shadows. This combines the advantages of available illumination and flash photography.Singapore-MIT Alliance (SMA

    Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

    Full text link
    This paper presents a new method for shadow removal using unpaired data, enabling us to avoid tedious annotations and obtain more diverse training samples. However, directly employing adversarial learning and cycle-consistency constraints is insufficient to learn the underlying relationship between the shadow and shadow-free domains, since the mapping between shadow and shadow-free images is not simply one-to-one. To address the problem, we formulate Mask-ShadowGAN, a new deep framework that automatically learns to produce a shadow mask from the input shadow image and then takes the mask to guide the shadow generation via re-formulated cycle-consistency constraints. Particularly, the framework simultaneously learns to produce shadow masks and learns to remove shadows, to maximize the overall performance. Also, we prepared an unpaired dataset for shadow removal and demonstrated the effectiveness of Mask-ShadowGAN on various experiments, even it was trained on unpaired data.Comment: Accepted to ICCV 201

    Interactive removal and ground truth for difficult shadow scenes

    Get PDF
    A user-centric method for fast, interactive, robust, and high-quality shadow removal is presented. Our algorithm can perform detection and removal in a range of difficult cases, such as highly textured and colored shadows. To perform detection, an on-the-fly learning approach is adopted guided by two rough user inputs for the pixels of the shadow and the lit area. After detection, shadow removal is performed by registering the penumbra to a normalized frame, which allows us efficient estimation of nonuniform shadow illumination changes, resulting in accurate and robust removal. Another major contribution of this work is the first validated and multiscene category ground truth for shadow removal algorithms. This data set containing 186 images eliminates inconsistencies between shadow and shadow-free images and provides a range of different shadow types such as soft, textured, colored, and broken shadow. Using this data, the most thorough comparison of state-of-the-art shadow removal methods to date is performed, showing our proposed algorithm to outperform the state of the art across several measures and shadow categories. To complement our data set, an online shadow removal benchmark website is also presented to encourage future open comparisons in this challenging field of research
    • …
    corecore