2,285 research outputs found

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Automated Building Information Extraction and Evaluation from High-resolution Remotely Sensed Data

    Get PDF
    The two-dimensional (2D) footprints and three-dimensional (3D) structures of buildings are of great importance to city planning, natural disaster management, and virtual environmental simulation. As traditional manual methodologies for collecting 2D and 3D building information are often both time consuming and costly, automated methods are required for efficient large area mapping. It is challenging to extract building information from remotely sensed data, considering the complex nature of urban environments and their associated intricate building structures. Most 2D evaluation methods are focused on classification accuracy, while other dimensions of extraction accuracy are ignored. To assess 2D building extraction methods, a multi-criteria evaluation system has been designed. The proposed system consists of matched rate, shape similarity, and positional accuracy. Experimentation with four methods demonstrates that the proposed multi-criteria system is more comprehensive and effective, in comparison with traditional accuracy assessment metrics. Building height is critical for building 3D structure extraction. As data sources for height estimation, digital surface models (DSMs) that are derived from stereo images using existing software typically provide low accuracy results in terms of rooftop elevations. Therefore, a new image matching method is proposed by adding building footprint maps as constraints. Validation demonstrates that the proposed matching method can estimate building rooftop elevation with one third of the error encountered when using current commercial software. With an ideal input DSM, building height can be estimated by the elevation contrast inside and outside a building footprint. However, occlusions and shadows cause indistinct building edges in the DSMs generated from stereo images. Therefore, a “building-ground elevation difference model” (EDM) has been designed, which describes the trend of the elevation difference between a building and its neighbours, in order to find elevation values at bare ground. Experiments using this novel approach report that estimated building height with 1.5m residual, which out-performs conventional filtering methods. Finally, 3D buildings are digitally reconstructed and evaluated. Current 3D evaluation methods did not present the difference between 2D and 3D evaluation methods well; traditionally, wall accuracy is ignored. To address these problems, this thesis designs an evaluation system with three components: volume, surface, and point. As such, the resultant multi-criteria system provides an improved evaluation method for building reconstruction

    Identifying Smokestacks in Remotely Sensed Imagery via Deep Learning Algorithms

    Get PDF
    Locating smokestacks in remote sensing imagery is a crucial first step to calculating smokestack heights, which allows for the accurate modeling of dioxin pollution spread and the study of resulting health impacts. In the interest of automating this process, this thesis examines deep learning networks and how changes in input datasets and network architecture affect image detection accuracy. This initial image detection serves as the first step in automated object recognition and height calculation. While this is applicable to general land use classification, this study specifically addresses detecting smokestack images. Different dataset scenarios are generated from the massive Functional Map of the World dataset, ranging from two to sixty-two classes, and network architectures from recent studies are used. Each dataset and network is analyzed in their performance by way of F-measure. Image characteristics are also analyzed from images that were correctly/incorrectly labeled by the algorithms, providing answers on what images the algorithms best predict and what qualities the algorithms cannot discern. The smokestack’s accuracy is reported at its highest through a five class training dataset, using an Adam Optimizer over six epochs. More or less classes returned lower scores, as did using the Stochastic Gradient Descent optimizer. Extended epochs did not return significantly higher or lower scores. The study concludes that while using more data can be effective in creating more accurate algorithms, using less data which is better structured for the problem at hand can have a greater effect

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Understanding High Resolution Aerial Imagery Using Computer Vision Techniques

    Get PDF
    Computer vision can make important contributions to the analysis of remote sensing satellite or aerial imagery. However, the resolution of early satellite imagery was not sufficient to provide useful spatial features. The situation is changing with the advent of very-high-spatial-resolution (VHR) imaging sensors. This change makes it possible to use computer vision techniques to perform analysis of man-made structures. Meanwhile, the development of multi-view imaging techniques allows the generation of accurate point clouds as ancillary knowledge. This dissertation aims at developing computer vision and machine learning algorithms for high resolution aerial imagery analysis in the context of application problems including debris detection, building detection and roof condition assessment. High resolution aerial imagery and point clouds were provided by Pictometry International for this study. Debris detection after natural disasters such as tornadoes, hurricanes or tsunamis, is needed for effective debris removal and allocation of limited resources. Significant advances in aerial image acquisition have greatly enabled the possibilities for rapid and automated detection of debris. In this dissertation, a robust debris detection algorithm is proposed. Large scale aerial images are partitioned into homogeneous regions by interactive segmentation. Debris areas are identified based on extracted texture features. Robust building detection is another important part of high resolution aerial imagery understanding. This dissertation develops a 3D scene classification algorithm for building detection using point clouds derived from multi-view imagery. Point clouds are divided into point clusters using Euclidean clustering. Individual point clusters are identified based on extracted spectral and 3D structural features. The inspection of roof condition is an important step in damage claim processing in the insurance industry. Automated roof condition assessment from remotely sensed images is proposed in this dissertation. Initially, texture classification and a bag-of-words model were applied to assess the roof condition using features derived from the whole rooftop. However, considering the complexity of residential rooftop, a more sophisticated method is proposed to divide the task into two stages: 1) roof segmentation, followed by 2) classification of segmented roof regions. Deep learning techniques are investigated for both segmentation and classification. A deep learned feature is proposed and applied in a region merging segmentation algorithm. A fine-tuned deep network is adopted for roof segment classification and found to achieve higher accuracy than traditional methods using hand-crafted features. Contributions of this study include the development of algorithms for debris detection using 2D images and building detection using 3D point clouds. For roof condition assessment, the solutions to this problem are explored in two directions: features derived from the whole rooftop and features extracted from each roof segments. Through our research, roof segmentation followed by segments classification was found to be a more promising method and the workflow processing developed and tested. Deep learning techniques are also investigated for both roof segmentation and segments classification. More unsupervised feature extraction techniques using deep learning can be explored in future work

    Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics

    Get PDF
    International audienceIn this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: (1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low level change information between the time layers and object level building description to recognize and separate changed and unaltered buildings. (2) To answering the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. (3) To simultaneously ensure the convergence, optimality and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel non-uniform stochastic object birth process, which generates relevant objects with higher probability based on low-level image features
    • …
    corecore