3,350 research outputs found

    Captured open book image de-warping and shading correction using 3D depth information

    Get PDF
    Various three dimensional (3D) measuring or capturing devices are introduced to the society recently, and there are abundant possibilities that we can take advantage of this new technology. In this research, we worked on one useful application: to correct the distortion due to the curved shape of the pages of an open book in captured images using of depth information. This work is relevant to camera-based capture devices that can use a projector to cast structured light patterns to provide depth information. In order to improve the visual quality of captured documents, we established our algorithm from two perspectives. First, we deal with the shading situation in the captured image as a result of the non-uniform lighting condition. The shading correction is based on the shading information of the margin of the document, or based on the estimated relative position of each piece of the scanned open book to the active illumination. The open book will look like it is captured under a uniform lighting source in the corrected images. Next, we handle the geometric distortion. The 3D shape reconstruction methods and geometric rectification are used to flatten the curvature of an open book. The models we used exploit specific prior assumptions about the nature of the printed material that is captured. The warped text line can be straightened after this rectification. The overall readability improvement in captured open book images obtained by using our method can be observed in the experimental results

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents

    Get PDF
    Recent large-scale document digitization initiatives have created new modes of access to modern library collections with the development of new hardware and software technologies. Most commonly, these digitization projects focus on accurately scanning bound texts, some reaching an efficiency of more than one million volumes per year. While vast digital collections are changing the way users access texts, current scanning paradigms can not handle many non-standard materials. Documentation forms such as manuscripts, scrolls, codices, deteriorated film, epigraphy, and rock art all hold a wealth of human knowledge in physical forms not accessible by standard book scanning technologies. This great omission motivates the development of new technology, presented by this thesis, that is not-only effective with deteriorated bound works, damaged manuscripts, and disintegrating photonegatives but also easily utilized by non-technical staff. First, a novel point light source calibration technique is presented that can be performed by library staff. Then, a photometric correction technique which uses known illumination and surface properties to remove shading distortions in deteriorated document images can be automatically applied. To complete the restoration process, a geometric correction is applied. Also unique to this work is the development of an image-based uncalibrated document scanner that utilizes the transmissivity of document substrates. This scanner extracts intrinsic document color information from one or both sides of a document. Simultaneously, the document shape is estimated to obtain distortion information. Lastly, this thesis provides a restoration framework for damaged photographic negatives that corrects photometric and geometric distortions. Current restoration techniques for the discussed form of negatives require physical manipulation to the photograph. The novel acquisition and restoration system presented here provides the first known solution to digitize and restore deteriorated photographic negatives without damaging the original negative in any way. This thesis work develops new methods of document scanning and restoration suitable for wide-scale deployment. By creating easy to access technologies, library staff can implement their own scanning initiatives and large-scale scanning projects can expand their current document-sets

    Rendering techniques for multimodal data

    Get PDF
    Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of Direct Multimodal Volume Rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the render-ing pipeline must the data fusion be realized in order to accomplish the desired visual integration and to provide fast re-renders when some fusion parameters are modified. In addition, it analyzes how existing monomodal visualization al-gorithms can be extended to multiple datasets and it compares their efficiency and their computational cost.Postprint (published version

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Non-Contact Height Estimation for Material Extrusion Additive Systems via Monocular Imagery

    Get PDF
    Additive manufacturing is a dynamic technology with a compelling potential to advance the manufacturing industry. Despite its capacity to produce intricate designs in an efficient manner, industry still has not widely adopted additive manufacturing since its commercialization as a result of its many challenges related to quality control. The Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Functional Materials Division, Soft Matter Materials Branch (RXAS) requires a practical and reliable method for maintaining quality control for the production of printed flexible electronics. Height estimation is a crucial component for maintaining quality control in Material Extrusion Additive Manufacturing (MEAM), as the fundamental process for constructing any structure relies on the consecutive layering of precise extrusions. This work presents a computer vision solution to the problem of height estimation using monocular imagery as applicable to MEAM

    A Book Reader Design for Persons with Visual Impairment and Blindness

    Get PDF
    The objective of this dissertation is to provide a new design approach to a fully automated book reader for individuals with visual impairment and blindness that is portable and cost effective. This approach relies on the geometry of the design setup and provides the mathematical foundation for integrating, in a unique way, a 3-D space surface map from a low-resolution time of flight (ToF) device with a high-resolution image as means to enhance the reading accuracy of warped images due to the page curvature of bound books and other magazines. The merits of this low cost, but effective automated book reader design include: (1) a seamless registration process of the two imaging modalities so that the low resolution (160 x 120 pixels) height map, acquired by an Argos3D-P100 camera, accurately covers the entire book spread as captured by the high resolution image (3072 x 2304 pixels) of a Canon G6 Camera; (2) a mathematical framework for overcoming the difficulties associated with the curvature of open bound books, a process referred to as the dewarping of the book spread images, and (3) image correction performance comparison between uniform and full height map to determine which map provides the highest Optical Character Recognition (OCR) reading accuracy possible. The design concept could also be applied to address the challenging process of book digitization. This method is dependent on the geometry of the book reader setup for acquiring a 3-D map that yields high reading accuracy once appropriately fused with the high-resolution image. The experiments were performed on a dataset consisting of 200 pages with their corresponding computed and co-registered height maps, which are made available to the research community (cate-book3dmaps.fiu.edu). Improvements to the characters reading accuracy, due to the correction steps, were quantified and measured by introducing the corrected images to an OCR engine and tabulating the number of miss-recognized characters. Furthermore, the resilience of the book reader was tested by introducing a rotational misalignment to the book spreads and comparing the OCR accuracy to those obtained with the standard alignment. The standard alignment yielded an average reading accuracy of 95.55% with the uniform height map (i.e., the height values of the central row of the 3-D map are replicated to approximate all other rows), and 96.11% with the full height maps (i.e., each row has its own height values as obtained from the 3D camera). When the rotational misalignments were taken into account, the results obtained produced average accuracies of 90.63% and 94.75% for the same respective height maps, proving added resilience of the full height map method to potential misalignments

    A case study evaluation: perceptually accurate textured surface models

    Get PDF
    This paper evaluates a new method for capturing surfaces with variations in albedo, height, and local orientation using a standard digital camera with three flash units. Similar to other approaches, captured areas are assumed to be globally flat and largely diffuse. Fortunately, this encompasses a wide array of interesting surfaces, including most materials found in the built environment, e.g., masonry, fabrics, floor coverings, and textured paints. We present a case study of naïve subjects who found that surfaces captured with our method, when rendered under novel lighting and view conditions, were statistically indistinguishable from photographs. This is a significant improvement over previous methods, to which our results are also compared. © 2009 ACM
    • …
    corecore