3,208 research outputs found

    Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation

    Get PDF
    BACKGROUND: Scalable and accurate health outcome prediction using electronic health record (EHR) data has gained much attention in research recently. Previous machine learning models mostly ignore relations between different types of clinical data (ie, laboratory components, International Classification of Diseases codes, and medications). OBJECTIVE: This study aimed to model such relations and build predictive models using the EHR data from intensive care units. We developed innovative neural network models and compared them with the widely used logistic regression model and other state-of-the-art neural network models to predict the patient\u27s mortality using their longitudinal EHR data. METHODS: We built a set of neural network models that we collectively called as long short-term memory (LSTM) outcome prediction using comprehensive feature relations or in short, CLOUT. Our CLOUT models use a correlational neural network model to identify a latent space representation between different types of discrete clinical features during a patient\u27s encounter and integrate the latent representation into an LSTM-based predictive model framework. In addition, we designed an ablation experiment to identify risk factors from our CLOUT models. Using physicians\u27 input as the gold standard, we compared the risk factors identified by both CLOUT and logistic regression models. RESULTS: Experiments on the Medical Information Mart for Intensive Care-III dataset (selected patient population: 7537) show that CLOUT (area under the receiver operating characteristic curve=0.89) has surpassed logistic regression (0.82) and other baseline NN models ( \u3c 0.86). In addition, physicians\u27 agreement with the CLOUT-derived risk factor rankings was statistically significantly higher than the agreement with the logistic regression model. CONCLUSIONS: Our results support the applicability of CLOUT for real-world clinical use in identifying patients at high risk of mortality

    Machine learning in critical care: state-of-the-art and a sepsis case study

    Get PDF
    Background: Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments. Results: The increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU. Conclusion: We have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.Peer ReviewedPostprint (published version

    On the intelligent management of sepsis in the intensive care unit

    Get PDF
    The management of the Intensive Care Unit (ICU) in a hospital has its own, very specific requirements that involve, amongst others, issues of risk-adjusted mortality and average length of stay; nurse turnover and communication with physicians; technical quality of care; the ability to meet patient's family needs; and avoid medical error due rapidly changing circumstances and work overload. In the end, good ICU management should lead to an improvement in patient outcomes. Decision making at the ICU environment is a real-time challenge that works according to very tight guidelines, which relate to often complex and sensitive research ethics issues. Clinicians in this context must act upon as much available information as possible, and could therefore, in general, benefit from at least partially automated computer-based decision support based on qualitative and quantitative information. Those taking executive decisions at ICUs will require methods that are not only reliable, but also, and this is a key issue, readily interpretable. Otherwise, any decision tool, regardless its sophistication and accuracy, risks being rendered useless. This thesis addresses this through the design and development of computer based decision making tools to assist clinicians at the ICU. It focuses on one of the main problems that they must face: the management of the Sepsis pathology. Sepsis is one of the main causes of death for non-coronary ICU patients. Its mortality rate can reach almost up to one out of two patients for septic shock, its most acute manifestation. It is a transversal condition affecting people of all ages. Surprisingly, its definition has only been standardized two decades ago as a systemic inflammatory response syndrome with confirmed infection. The research reported in this document deals with the problem of Sepsis data analysis in general and, more specifically, with the problem of survival prediction for patients affected with Severe Sepsis. The tools at the core of the investigated data analysis procedures stem from the fields of multivariate and algebraic statistics, algebraic geometry, machine learning and computational intelligence. Beyond data analysis itself, the current thesis makes contributions from a clinical point of view, as it provides substantial evidence to the debate about the impact of the preadmission use of statin drugs in the ICU outcome. It also sheds light into the dependence between Septic Shock and Multi Organic Dysfunction Syndrome. Moreover, it defines a latent set of Sepsis descriptors to be used as prognostic factors for the prediction of mortality and achieves an improvement on predictive capability over indicators currently in use.La gestió d'una Unitat de Cures Intensives (UCI) hospitalària presenta uns requisits força específics incloent, entre altres, la disminució de la taxa de mortalitat, la durada de l'ingrès, la rotació d'infermeres i la comunicació entre metges amb al finalitad de donar una atenció de qualitat atenent als requisits tant dels malalts com dels familiars. També és força important controlar i minimitzar els error mèdics deguts a canvis sobtats i a la presa ràpida de deicisions assistencials. Al cap i a la fi, la bona gestió de la UCI hauria de resultar en una reducció de la mortalitat i durada d'estada. La presa de decisions en un entorn de crítics suposa un repte de presa de decisions en temps real d'acord a unes guies clíniques molt restrictives i que, pel que fa a la recerca, poden resultar en problemes ètics força sensibles i complexos. Per tant, el personal sanitari que ha de prendre decisions sobre la gestió de malalts crítics no només requereix eines de suport a la decisió que siguin fiables sinó que, a més a més, han de ser interpretables. Altrament qualsevol eina de decisió que no presenti aquests trets no és considerarà d'utilitat clínica. Aquesta tesi doctoral adreça aquests requisits mitjançant el desenvolupament d'eines de suport a la decisió per als intensivistes i es focalitza en un dels principals problemes als que s'han denfrontar: el maneig del malalt sèptic. La Sèpsia és una de les principals causes de mortalitats a les UCIS no-coronàries i la seva taxa de mortalitat pot arribar fins a la meitat dels malalts amb xoc sèptic, la seva manifestació més severa. La Sèpsia és un síndrome transversal, que afecta a persones de totes les edats. Sorprenentment, la seva definició ha estat estandaritzada, fa només vint anys, com a la resposta inflamatòria sistèmica a una infecció corfimada. La recerca presentada en aquest document fa referència a l'anàlisi de dades de la Sèpsia en general i, de forma més específica, al problema de la predicció de la supervivència de malalts afectats amb Sèpsia Greu. Les eines i mètodes que formen la clau de bòveda d'aquest treball provenen de diversos camps com l'estadística multivariant i algebràica, geometria algebraica, aprenentatge automàtic i inteligència computacional. Més enllà de l'anàlisi per-se, aquesta tesi també presenta una contribució des de el punt de vista clínic atès que presenta evidència substancial en el debat sobre l'impacte de l'administració d'estatines previ a l'ingrès a la UCI en els malalts sèptics. També s'aclareix la forta dependència entre el xoc sèptic i el Síndrome de Disfunció Multiorgànica. Finalment, també es defineix un conjunt de descriptors latents de la Sèpsia com a factors de pronòstic per a la predicció de la mortalitat, que millora sobre els mètodes actualment més utilitzats en la UCI

    A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis.

    Get PDF
    RATIONALE: Improving the prospective identification of patients with systemic inflammatory response syndrome (SIRS) and sepsis at low risk for organ dysfunction and death is a major clinical challenge. OBJECTIVES: To develop and validate a multibiomarker-based prediction model for 28-day mortality in critically ill patients with SIRS and sepsis. METHODS: A derivation cohort (n = 888) and internal test cohort (n = 278) were taken from a prospective study of critically ill intensive care unit (ICU) patients meeting two of four SIRS criteria at an academic medical center for whom plasma was obtained within 24 hours. The validation cohort (n = 759) was taken from a prospective cohort enrolled at another academic medical center ICU for whom plasma was obtained within 48 hours. We measured concentrations of angiopoietin-1, angiopoietin-2, IL-6, IL-8, soluble tumor necrosis factor receptor-1, soluble vascular cell adhesion molecule-1, granulocyte colony-stimulating factor, and soluble Fas. MEASUREMENTS AND MAIN RESULTS: We identified a two-biomarker model in the derivation cohort that predicted mortality (area under the receiver operator characteristic curve [AUC], 0.79; 95% confidence interval [CI], 0.74-0.83). It performed well in the internal test cohort (AUC, 0.75; 95% CI, 0.65-0.85) and the external validation cohort (AUC, 0.77; 95% CI, 0.72-0.83). We determined a model score threshold demonstrating high negative predictive value (0.95) for death. In addition to a low risk of death, patients below this threshold had shorter ICU length of stay, lower incidence of acute kidney injury, acute respiratory distress syndrome, and need for vasopressors. CONCLUSIONS: We have developed a simple, robust biomarker-based model that identifies patients with SIRS/sepsis at low risk for death and organ dysfunction

    Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery

    Get PDF
    Background The pathophysiology of septic acute kidney injury is inadequately understood. Recently, subphenotypes for sepsis and AKI have been derived. The objective of this study was to assess whether a combination of comorbidities, baseline clinical data, and biomarkers could classify meaningful subphenotypes in septic AKI with different outcomes. Methods We performed a post hoc analysis of the prospective Finnish Acute Kidney Injury (FINNAKI) study cohort. We included patients admitted with sepsis and acute kidney injury during the first 48 h from admission to intensive care (according to Kidney Disease Improving Global Outcome criteria). Primary outcomes were 90-day mortality and renal recovery on day 5. We performed latent class analysis using 30 variables obtained on admission to classify subphenotypes. Second, we used logistic regression to assess the association of derived subphenotypes with 90-day mortality and renal recovery on day 5. Results In total, 301 patients with septic acute kidney injury were included. Based on the latent class analysis, a two-class model was chosen. Subphenotype 1 was assigned to 133 patients (44%) and subphenotype 2 to 168 patients (56%). Increased levels of inflammatory and endothelial injury markers characterized subphenotype 2. At 90 days, 29% of patients in subphenotype 1 and 41% of patients in subphenotype 2 had died. Subphenotype 2 was associated with a lower probability of short-term renal recovery and increased 90-day mortality. Conclusions In this post hoc analysis, we identified two subphenotypes of septic acute kidney injury with different clinical outcomes. Future studies are warranted to validate the suggested subphenotypes of septic acute kidney injury.Peer reviewe

    Characterization of Postoperative Recovery After Cardiac Surgery- Insights into Predicting Individualized Recovery Pattern

    Get PDF
    Understanding the patterns of postoperative recovery after cardiac surgery is important from several perspectives: to facilitate patient-centered treatment decision making, to inform health care policy targeted to improve postoperative recovery, and to guide patient care after cardiac surgery. Our works aimed to address the following: 1) to summarize existing approaches to measuring and reporting postoperative recovery after cardiac surgery, 2) to develop a framework to efficiently measure patient-reported outcome measures to understand longitudinal recovery process, and 3) to explore ways to summarize the longitudinal recovery data in an actionable way, and 4) to evaluate whether addition of patient information generated through different phases of care would improve the ability to predict patient’s outcome. We first conducted a systematic review of the studies reporting on postoperative recovery after cardiac surgery using patient-reported outcome measures. Our systematic review demonstrated that the current approaches to measuring and reporting recovery as a treatment outcome varied widely across studies. This made synthesis of collective knowledge challenging and highlighted key gaps in knowledge, which we sought to address in our prospective cohort study. We conducted a prospective single-center cohort study of patients after cardiac surgery to measure their recovery trajectory across multiple domains of recovery. Using a digital platform, we measured patient recovery in various domains over 30 days after surgery to visualize a granular evolution of patient recovery after cardiac surgery. We used a latent class analysis to facilitate identification of dominant trajectory patterns that had been obscured in a conventional way of reporting such time-series data using group-level means. For the pain domain, we identified 4 trajectory classes, one of which was a group of patients with persistently high pain trajectory that only became distinguishable from less concerning group after 10 days. Therefore, we obtained a potentially actionable insights to tailoring individualized follow-up timing after surgery to improve the pain control. The prospective study embodied several important features to successfully conducting such studies of patient-reported outcomes. This included the use of digital platform to facilitate efficient data collection extending after hospital discharge, iteratively improving the protocol to optimize patient engagement including evaluation of potential barriers to survey completion, and using latent class analysis to identify dominant patterns of recovery trajectories. We outlined these insights in the protocol manuscript to inform subsequent studies aiming to leverage such a digital platform to measure longitudinal patient-centered outcome. Finally, we evaluated the potential value of incorporating health care data generated in the different phases of patient care in improving the prediction of postoperative outcomes after cardiac surgery. The current standard of risk prediction in cardiac surgery is the Society of Thoracic Surgeons’ (STS) risk model, which only uses patient information available preoperatively. We demonstrated through prediction models fitted on the national STS risk model for coronary artery bypass graft surgery that the addition of intraoperative variables to the conventional preoperative variable set improved the performance of prediction models substantially. Using machine learning approach to such a high-dimensional dataset proved to be marginally important. This work demonstrated the potential value and importance of being able to leverage health care data to continuously update the prediction to inform patient outcomes and guide clinical care. Our work collectively advanced knowledge in several key aspects of postoperative recovery. First, we highlighted the knowledge gap in the existing literature through characterizing the variability in the ways such studies had been conducted. Second, we designed and described a framework to measure postoperative recovery and an analytical approach to informatively characterize longitudinal patient recovery. Third, we employed these designs in a prospective cohort study to measure and analyze recovery trajectories and described clinical insights obtained from the study. Finally, we demonstrated the potential value of a dynamic risk model to iteratively improve its predictive performance by incorporating new data generated as the patient progresses through the phase of care. Such a platform has the potential to individualize patient’s post-acute care in a data-driven manner

    A Quotient Basis Kernel for the prediction of mortality in severe sepsis patients

    Get PDF
    In this paper, we describe a novel kernel for multinomial distributions, namely the Quotient Basis Kernel (QBK), which is based on a suitable reparametrization of the input space through algebraic geometry and statistics. The QBK is used here for data transformation prior to classification in a medical problem concerning the prediction of mortality in patients suffering severe sepsis. This is a common clinical syndrome, often treated at the Intensive Care Unit (ICU) in a time-critical context. Mortality prediction results with Support Vector Machines using QBK compare favorably with those obtained using alternative kernels and standard clinical procedures.Postprint (published version
    • …
    corecore