19 research outputs found

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Classification and computational search for planar functions in characteristic 3

    Get PDF
    Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Constructing APN functions through isotopic shifts

    Get PDF
    Almost perfect nonlinear (APN) functions over fields of characteristic 2 play an important role in cryptography, coding theory and, more generally, information theory as well as mathematics. Building new APN families is a challenge which has not been successfully addressed for more than seven years now. The most general known equivalence relation preserving APN property in characteristic 2 is CCZ-equivalence. Extended to general characteristic, it also preserves planarity. In the case of quadratic planar functions, it is a particular case of isotopic equivalence. We apply the idea of isotopic equivalence to transform APN functions in characteristic 2 into other functions, some of which can be APN. We deduce new quadratic APN functions and a new quadratic APN family

    A recent survey of permutation trinomials over finite fields

    Get PDF
    Constructing permutation polynomials is a hot topic in the area of finite fields, and permutation polynomials have many applications in different areas. Recently, several classes of permutation trinomials were constructed. In 2015, Hou surveyed the achievements of permutation polynomials and novel methods. But, very few were known at that time. Recently, many permutation binomials and trinomials have been constructed. Here we survey the significant contribution made to the construction of permutation trinomials over finite fields in recent years. Emphasis is placed on significant results and novel methods. The covered material is split into three aspects: the existence of permutation trinomials of the respective forms xrh(xs) x^{r}h(x^{s}) , λ1xa+λ2xb+λ3xc \lambda_{1}x^{a}+\lambda_{2}x^{b}+\lambda_{3}x^{c} and x+xs(qm1)+1+xt(qm1)+1 x+x^{s(q^{m}-1)+1} +x^{t(q^{m}-1)+1} , with Niho-type exponents s,t s, t

    On known constructions of APN and AB functions and their relation to each other

    Get PDF
    This work is dedicated to APN and AB functions which are optimal against differential and linear cryptanlysis when used as Sboxes in block ciphers. They also have numerous applications in other branches of mathematics and information theory such as coding theory, sequence design, combinatorics, algebra and projective geometry. In this paper we give an overview of known constructions of APN and AB functions, in particular, those leading to infinite classes of these functions. Among them, the bivariate construction method, the idea first introduced in 2011 by the third author of the present paper, turned out to be one of the most fruitful. It has been known since 2011 that one of the families derived from the bivariate construction contains the infinite families derived by Dillon’s hexanomial method. Whether the former family is larger than the ones it contains has stayed an open problem which we solve in this paper. Further we consider the general bivariate construction from 2013 by the third author and study its relation to the recently found infinite families of bivariate APN functions

    Binary linear codes with few weights from two-to-one functions

    Full text link
    In this paper, we apply two-to-one functions over F2n\mathbb{F}_{2^n} in two generic constructions of binary linear codes. We consider two-to-one functions in two forms: (1) generalized quadratic functions; and (2) (x2t+x)e\left(x^{2^t}+x\right)^e with gcd(t,n)=1\gcd(t, n)=1 and gcd(e,2n1)=1\gcd\left(e, 2^n-1\right)=1. Based on the study of the Walsh transforms of those functions or their related-ones, we present many classes of linear codes with few nonzero weights, including one weight, three weights, four weights and five weights. The weight distributions of the proposed codes with one weight and with three weights are determined. In addition, we discuss the minimum distance of the dual of the constructed codes and show that some of them achieve the sphere packing bound. { Moreover, several examples show that some of our codes are optimal and some have the best known parameters.

    Computational search for isotopic semifields and planar functions in characteristic 3

    Get PDF
    In this thesis, we investigate the possibility of finding new planar functions and corresponding semifields in characteristic 3 by the construction of isotopic semifields from the known families and sporadic instances of planar functions. Using the conditions laid out by Coulter and Henderson, we are able to deduce that a number of the known infinite families can never produce CCZ-inequivalent functions via isotopism. For the remaining families, we computationally investigate the isotopism classes of their instances over finite fields of order 3^n for n ≤ 8. We find previously unknown isotopisms between the semifields corresponding to some of the known planar functions for n = 6 and n = 8. This allows us to refine the known classification of planar functions up to isotopism, and to provide an updated, partial classification up to isotopism over finite fields of order 3^n for n ≤ 8.Masteroppgave i informatikkINF399MAMN-INFMAMN-PRO
    corecore