32 research outputs found

    Novel statistical modeling methods for traffic video analysis

    Get PDF
    Video analysis is an active and rapidly expanding research area in computer vision and artificial intelligence due to its broad applications in modern society. Many methods have been proposed to analyze the videos, but many challenging factors remain untackled. In this dissertation, four statistical modeling methods are proposed to address some challenging traffic video analysis problems under adverse illumination and weather conditions. First, a new foreground detection method is presented to detect the foreground objects in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global probability density function for the foreground and applies the Bayes decision rule for model selection, is proposed to model the foreground globally. A Local Background Modeling (LBM) method is applied by choosing the most significant Gaussian density in the Gaussian mixture model to model the background locally for each pixel. In addition, to mitigate the correlation effects of the Red, Green, and Blue (RGB) color space on the independence assumption among the color component images, some other color spaces are investigated for feature extraction. To further enhance the discriminatory power of the input feature vector, the horizontal and vertical Haar wavelet features and the temporal information are integrated into the color features to define a new 12-dimensional feature vector space. Finally, the Bayes classifier is applied for the classification of the foreground and the background pixels. Second, a novel moving cast shadow detection method is presented to detect and remove the cast shadows from the foreground. Specifically, a set of new chromatic criteria is presented to detect the candidate shadow pixels in the Hue, Saturation, and Value (HSV) color space. A new shadow region detection method is then proposed to cluster the candidate shadow pixels into shadow regions. A statistical shadow model, which uses a single Gaussian distribution to model the shadow class, is presented to classify shadow pixels. Additionally, an aggregated shadow detection strategy is presented to integrate the shadow detection results and remove the shadows from the foreground. Third, a novel statistical modeling method is presented to solve the automated road recognition problem for the Region of Interest (RoI) detection in traffic video analysis. A temporal feature guided statistical modeling method is proposed for road modeling. Additionally, a model pruning strategy is applied to estimate the road model. Then, a new road region detection method is presented to detect the road regions in the video. The method applies discriminant functions to classify each pixel in the estimated background image into a road class or a non-road class, respectively. The proposed method provides an intra-cognitive communication mode between the RoI selection and video analysis systems. Fourth, a novel anomalous driving detection method in videos, which can detect unsafe anomalous driving behaviors is introduced. A new Multiple Object Tracking (MOT) method is proposed to extract the velocities and trajectories of moving foreground objects in video. The new MOT method is a motion-based tracking method, which integrates the temporal and spatial features. Then, a novel Gaussian Local Velocity (GLV) modeling method is presented to model the normal moving behavior in traffic videos. The GLV model is built for every location in the video frame, and updated online. Finally, a discriminant function is proposed to detect anomalous driving behaviors. To assess the feasibility of the proposed statistical modeling methods, several popular public video datasets, as well as the real traffic videos from the New Jersey Department of Transportation (NJDOT) are applied. The experimental results show the effectiveness and feasibility of the proposed methods

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Dynamic reconfiguration methods for active camera networks

    Get PDF
    [no abstract

    Enhanced context-aware framework for individual and crowd condition prediction

    Get PDF
    Context-aware framework is basic context-aware that utilizes contexts such as user with their individual activities, location and time, which are hidden information derived from smartphone sensors. These data are used to monitor a situation in a crowd scenario. Its application using embedded sensors has the potential to monitor tasks that are practically complicated to access. Inaccuracies observed in the individual activity recognition (IAR) due to faulty accelerometer data and data classification problem have led to its inefficiency when used for prediction. This study developed a solution to this problem by introducing a method of feature extraction and selection, which provides a higher accuracy by selecting only the relevant features and minimizing false negative rate (FNR) of IAR used for crowd condition prediction. The approach used was the enhanced context-aware framework (EHCAF) for the prediction of human movement activities during an emergency. Three new methods to ensure high accuracy and low FNR were introduced. Firstly, an improved statistical-based time-frequency domain (SBTFD) representing and extracting hidden context information from sensor signals with improved accuracy was introduced. Secondly, a feature selection method (FSM) to achieve improved accuracy with statistical-based time-frequency domain (SBTFD) and low false negative rate was used. Finally, a method for individual behaviour estimation (IBE) and crowd condition prediction in which the threshold and crowd density determination (CDD) was developed and used, achieved a low false negative rate. The approach showed that the individual behaviour estimation used the best selected features, flow velocity estimation and direction to determine the disparity value of individual abnormality behaviour in a crowd. These were used for individual and crowd density determination evaluation in terms of inflow, outflow and crowd turbulence during an emergency. Classifiers were used to confirm features ability to differentiate individual activity recognition data class. Experimenting SBTFD with decision tree (J48) classifier produced a maximum of 99:2% accuracy and 3:3% false negative rate. The individual classes were classified based on 7 best features, which produced a reduction in dimension, increased accuracy to 99:1% and had a low false negative rate (FNR) of 2:8%. In conclusion, the enhanced context-aware framework that was developed in this research proved to be a viable solution for individual and crowd condition prediction in our society

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Caracterización semántica de espacios: Sistema de Videovigilancia Inteligente en Smart Cities

    Get PDF
    Esta Tesis Doctoral, realizada dentro del proyecto europeo HuSIMS - Human Situation Monitoring System, presenta una metodología inteligente para la caracterización de escenarios capaz de detectar e identificar situaciones anómalas analizando el movimiento de los objetos. El sistema está diseñado para reducir al mínimo el procesamiento y la transmisión de vídeo permitiendo el despliegue de un gran número de cámaras y sensores, y por lo tanto adecuada para Smart Cities. Se propone un enfoque en tres etapas. Primero, la detección de objetos en movimiento en las propias cámaras, utilizando algorítmica sencilla, evitando el envío de datos de vídeo. Segundo, la construcción de un modelo de las zonas de las escenas utilizando los parámetros de movimiento identificados previamente. Y tercero, la realización de razonado semántico sobre el modelo de rutas y los parámetros de los objetos de la escena actual para identificar las alarmas reconociendo la naturaleza de los eventosDepartamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemátic

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read
    corecore