101 research outputs found

    Cryptanalysis of a Generalized Unbalanced Feistel Network Structure

    Get PDF
    This paper reevaluates the security of GF-NLFSR, a new kind of generalized unbalanced Feistel network structure that was proposed at ACISP 2009. We show that GF-NLFSR itself reveals a very slow diffusion rate, which could lead to several distinguishing attacks. For GF-NLFSR containing nn sub-blocks, we find an n2n^2-round integral distinguisher by algebraic methods and further use this integral to construct an (n2+n−2)(n^2+n-2)-round impossible differential distinguisher. Compared with the original (3n−1)(3n-1)-round integral and (2n−1)(2n-1)-round impossible differential, ours are significantly better. Another contribution of this paper is to introduce a kind of non-surjective attack by analyzing a variant structure of GF-NLFSR, whose provable security against differential and linear cryptanalysis can also be provided. The advantage of the proposed non-surjective attack is that traditional non-surjective attack is only applicable to Feistel ciphers with non-surjective (non-uniform) round functions, while ours could be applied to block ciphers with bijective ones. Moreover, its data complexity is O(l)\mathcal{O}(l) with ll the block length

    Block Ciphers: Analysis, Design and Applications

    Get PDF
    In this thesis we study cryptanalysis, applications and design of secret key block ciphers. In particular, the important class of Feistel ciphers is studied, which has a number of rounds, where in each round one applies a cryptographically weak function

    Halka: A Lightweight, Software Friendly Block Cipher Using Ultra-lightweight 8-bit S-box

    Get PDF
    This paper presents the design of a lightweight, yet software friendly, block cipher. Most of the lightweight block ciphers are nibble-oriented as the implementation of a 4-bit S-box is much more compact than an 8-bit S-box. This paper uses a novel implementation of multiplicative inverse for 8-bit S-boxes using LFSR requiring only 138 gate-equivalent. With this powerful scheme, we design a lightweight block cipher competitive with existing standards in terms of hardware gate equivalent first time using an 8-bit S-box

    Quantitative security of block ciphers:designs and cryptanalysis tools

    Get PDF
    Block ciphers probably figure in the list of the most important cryptographic primitives. Although they are used for many different purposes, their essential goal is to ensure confidentiality. This thesis is concerned by their quantitative security, that is, by measurable attributes that reflect their ability to guarantee this confidentiality. The first part of this thesis deals with well know results. Starting with Shannon's Theory of Secrecy, we move to practical implications for block ciphers, recall the main schemes on which nowadays block ciphers are based, and introduce the Luby-Rackoff security model. We describe distinguishing attacks and key-recovery attacks against block ciphers and show how to turn the firsts into the seconds. As an illustration, we recall linear cryptanalysis which is a classical example of statistical cryptanalysis. In the second part, we consider the (in)security of block ciphers against statistical cryptanalytic attacks and develop some tools to perform optimal attacks and quantify their efficiency. We start with a simple setting in which the adversary has to distinguish between two sources of randomness and show how an optimal strategy can be derived in certain cases. We proceed with the practical situation where the cardinality of the sample space is too large for the optimal strategy to be implemented and show how this naturally leads to the concept of projection-based distinguishers, which reduce the sample space by compressing the samples. Within this setting, we re-consider the particular case of linear distinguishers and generalize them to sets of arbitrary cardinality. We show how these distinguishers between random sources can be turned into distinguishers between random oracles (or block ciphers) and how, in this setting, one can generalize linear cryptanalysis to Abelian groups. As a proof of concept, we show how to break the block cipher TOY100, introduce the block cipher DEAN which encrypts blocks of decimal digits, and apply the theory to the SAFER block cipher family. In the last part of this thesis, we introduce two new constructions. We start by recalling some essential notions about provable security for block ciphers and about Serge Vaudenay's Decorrelation Theory, and introduce new simple modules for which we prove essential properties that we will later use in our designs. We then present the block cipher C and prove that it is immune against a wide range of cryptanalytic attacks. In particular, we compute the exact advantage of the best distinguisher limited to two plaintext/ciphertext samples between C and the perfect cipher and use it to compute the exact value of the maximum expected linear probability (resp. differential probability) of C which is known to be inversely proportional to the number of samples required by the best possible linear (resp. differential) attack. We then introduce KFC a block cipher which builds upon the same foundations as C but for which we can prove results for higher order adversaries. We conclude both discussions about C and KFC by implementation considerations

    Whirlwind: a new cryptographic hash function

    Get PDF
    A new cryptographic hash function Whirlwind is presented. We give the full specification and explain the design rationale. We show how the hash function can be implemented efficiently in software and give first performance numbers. A detailed analysis of the security against state-of-the-art cryptanalysis methods is also provided. In comparison to the algorithms submitted to the SHA-3 competition, Whirlwind takes recent developments in cryptanalysis into account by design. Even though software performance is not outstanding, it compares favourably with the 512-bit versions of SHA-3 candidates such as LANE or the original CubeHash proposal and is about on par with ECHO and MD6

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Cryptanalysis of Some Block Cipher Constructions

    Get PDF
    When the public-key cryptography was introduced in the 1970s, symmetric-key cryptography was believed to soon become outdated. Nevertheless, we still heavily rely on symmetric-key primitives as they give high-speed performance. They are used to secure mobile communication, e-commerce transactions, communication through virtual private networks and sending electronic tax returns, among many other everyday activities. However, the security of symmetric-key primitives does not depend on a well-known hard mathematical problem such as the factoring problem, which is the basis of the RSA public-key cryptosystem. Instead, the security of symmetric-key primitives is evaluated against known cryptanalytic techniques. Accordingly, the topic of furthering the state-of-the-art of cryptanalysis of symmetric-key primitives is an ever-evolving topic. Therefore, this thesis is dedicated to the cryptanalysis of symmetric-key cryptographic primitives. Our focus is on block ciphers as well as hash functions that are built using block ciphers. Our contributions can be summarized as follows: First, we tackle the limitation of the current Mixed Integer Linear Programming (MILP) approaches to represent the differential propagation through large S-boxes. Indeed, we present a novel approach that can efficiently model the Difference Distribution Table (DDT) of large S-boxes, i.e., 8-bit S-boxes. As a proof of the validity and efficiency of our approach, we apply it on two out of the seven AES-round based constructions that were recently proposed in FSE 2016. Using our approach, we improve the lower bound on the number of active S-boxes of one construction and the upper bound on the best differential characteristic of the other. Then, we propose meet-in-the-middle attacks using the idea of efficient differential enumeration against two Japanese block ciphers, i.e., Hierocrypt-L1 and Hierocrypt-3. Both block ciphers were submitted to the New European Schemes for Signatures, Integrity, and Encryption (NESSIE) project, selected as one of the Japanese e-Government recommended ciphers in 2003 and reselected in the candidate recommended ciphers list in 2013. We construct five S-box layer distinguishers that we use to recover the master keys of reduced 8 S-box layer versions of both block ciphers. In addition, we present another meet-in-the-middle attack on Hierocrypt-3 with slightly higher time and memory complexities but with much less data complexity. Afterwards, we shift focus to another equally important cryptanalytic attack, i.e., impossible differential attack. SPARX-64/128 is selected among the SPARX family that was recently proposed to provide ARX based block cipher whose security against differential and linear cryptanalysis can be proven. We assess the security of SPARX-64/128 against impossible differential attack and show that it can reach the same number of rounds the division-based integral attack, proposed by the designers, can reach. Then, we pick Kiasu-BC as an example of a tweakable block cipher and prove that, on contrary to its designers’ claim, the freedom in choosing the publicly known tweak decreases its security margin. Lastly, we study the impossible differential properties of the underlying block cipher of the Russian hash standard Streebog and point out the potential risk in using it as a MAC scheme in the secret-IV mode

    Cryptanalysis of Block Ciphers with New Design Strategies

    Get PDF
    Block ciphers are among the mostly widely used symmetric-key cryptographic primitives, which are fundamental building blocks in cryptographic/security systems. Most of the public-key primitives are based on hard mathematical problems such as the integer factorization in the RSA algorithm and discrete logarithm problem in the DiffieHellman. Therefore, their security are mathematically proven. In contrast, symmetric-key primitives are usually not constructed based on well-defined hard mathematical problems. Hence, in order to get some assurance in their claimed security properties, they must be studied against different types of cryptanalytic techniques. Our research is dedicated to the cryptanalysis of block ciphers. In particular, throughout this thesis, we investigate the security of some block ciphers constructed with new design strategies. These new strategies include (i) employing simple round function, and modest key schedule, (ii) using another input called tweak rather than the usual two inputs of the block ciphers, the plaintext and the key, to instantiate different permutations for the same key. This type of block ciphers is called a tweakable block cipher, (iii) employing linear and non-linear components that are energy efficient to provide low energy consumption block ciphers, (iv) employing optimal diffusion linear transformation layer while following the AES-based construction to provide faster diffusion rate, and (v) using rather weak but larger S-boxes in addition to simple linear transformation layers to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis. The results presented in this thesis can be summarized as follows: Initially, we analyze the security of two lightweight block ciphers, namely, Khudra and Piccolo against Meet-in-the-Middle (MitM) attack based on the Demirci and Selcuk approach exploiting the simple design of the key schedule and round function. Next, we investigate the security of two tweakable block ciphers, namely, Kiasu-BC and SKINNY. According to the designers, the best attack on Kiasu-BC covers 7 rounds. However, we exploited the tweak to present 8-round attack using MitM with efficient enumeration cryptanalysis. Then, we improve the previous results of the impossible differential cryptanalysis on SKINNY exploiting the tweakey schedule and linear transformation layer. Afterwards, we study the security of new low energy consumption block cipher, namely, Midori128 where we present the longest impossible differential distinguishers that cover complete 7 rounds. Then, we utilized 4 of these distinguishers to launch key recovery attack against 11 rounds of Midori128 to improve the previous results on this cipher using the impossible differential cryptanalysis. Then, using the truncated differential cryptanalysis, we are able to attack 13 rounds of Midori128 utilizing a 10-round differential distinguisher. We also analyze Kuznyechik, the standard Russian federation block cipher, against MitM with efficient enumeration cryptanalysis where we improve the previous results on Kuznyechik, using MitM attack with efficient enumeration, by presenting 6-round attack. Unlike the previous attack, our attack exploits the exact values of the coefficients of the MDS transformation that is used in the cipher. Finally, we present key recovery attacks using the multidimensional zero-correlation cryptanalysis against SPARX-128, which follows the long trail design strategy, to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis
    • …
    corecore