652 research outputs found

    Some Application of Switched Current Circuits.

    Get PDF
    A complete digital signal processing system requires analog circuits acting as an interface between the digital system and the outside analog world. Various techniques have been proposed to implement these circuits, but the one compatible with digital technology is switched capacitor (SC) technique. However, there are still some problems with SC circuits which are as follows: (i) The process technology used for these circuits is not compatible with the standard digital process technology due to extra poly-silicon layer, (ii) the performance of these circuits worsens for low voltage operations, because lower supply voltage will tend to increase power consumption for the same dynamic range, and in order to maintain the same dynamic range on a low supply voltage requires a quadratic increase in sampling capacitance to reduce thermal noise. The required increase in bias current to maintain circuit bandwidth results in a net increase in the overall power consumption. To overcome these problems, a new technique called the switched current (SI) technique has been proposed. The technique utilizes the ability of an MOS transistor to maintain its drain current, when its gate is open circuited, through the charge stored on its gate oxide capacitance. In this technique signals are represented by currents instead of voltages and, therefore, the signal swing is only indirectly limited by a reduction of the available voltage range. In a traditional voltage mode circuit, the supply voltage imposes a direct limitation on signal swing. Switched current circuits could therefore be a better for low voltage operation. 5 The application of switched current systems is much same as for switched capacitor systems viz. filters, A/D and D/A converters, general signal processing etc. but the prime aim is that switched current circuits should be implemented using a standard VLSI. In this work, the SI technique has been studied and several reported SI circuits have been simulated for their performance. Specifically, the work was aimed at the study of developing SI technique for the design of high performance circuits such as Integrators, Differentiators, Programmable filters, A/D and D/A converters, Sigma Delta Modulators, Multipliers, Delays etc. All the investigations are based on the PSPICE simulations using model parameters of the BISIM335 MOS transistors. The investigations match the theoretical interpretations and predictions. The entire gamut of this dissertation has been to study the already reported SI circuits and to investigate them for improved accuracy, dynamic range, bandwidth, linearity and low voltage operation

    Switched-current filtering systems: design, synthesis and software development

    Get PDF
    Allpass filters are commonly employed in many applications to perform group delay equalisation in the passband. They are non-minimum phase by definition and are characterised by poles and zeros in mirror-image symmetry. SI allpass filters of both cascade biquad and bilinear-LDI ladder types have been in existence. These were implemented using Euler based integrators. Cascade biquads are known to have highly sensitive amplitude responses and Euler integrators suffer from excess phase. The equalisers that are proposed here are based on bilinear integrators instead of Euler ones. Derivation of these equalisers can proceed from either the s-domain, or directly from the z-domain, where a prototype is synthesised using the respective continued-fractions expansions, and simulated using standard matrix methods. The amplitude response of the bilinear allpass filter is shown to be completely insensitive to deviations in the reactive ladder section. Simulations of sensitivities and non-ideal responses reveal the advantages and disadvantages of the various structures. Existing DI multirate filters have to date been implemented as direct-form FIR and IIR polyphase structures, or as simple cascade biquad or ladder structures with non-optimum settling times. FIR structures require a large number of impulse coefficients to realise highly selective responses. Even in the case of linear phase response with symmetric impulse coefficients, when the number of coefficients can be halved, significant overheads can be incurred by additional multiplexing circuitry. Direct-form IIR structures are simple but are known to be sensitive to coefficient deviations and structures with non-optimum settling times operate entirely at the higher clock frequency. The novel SI decimators and interpolators proposed are based on low sensitivity ladder structures coupled with FIR polyphase networks. They operate entirely at the lower clock frequency which maximises the time available for the memory cells to settle. Two different coupling architectures with different advantages and disadvantages are studied

    FEEDFORWARD ARTIFICIAL NEURAL NETWORK DESIGN UTILISING SUBTHRESHOLD MODE CMOS DEVICES

    Get PDF
    This thesis reviews various previously reported techniques for simulating artificial neural networks and investigates the design of fully-connected feedforward networks based on MOS transistors operating in the subthreshold mode of conduction as they are suitable for performing compact, low power, implantable pattern recognition systems. The principal objective is to demonstrate that the transfer characteristic of the devices can be fully exploited to design basic processing modules which overcome the linearity range, weight resolution, processing speed, noise and mismatch of components problems associated with weak inversion conduction, and so be used to implement networks which can be trained to perform practical tasks. A new four-quadrant analogue multiplier, one of the most important cells in the design of artificial neural networks, is developed. Analytical as well as simulation results suggest that the new scheme can efficiently be used to emulate both the synaptic and thresholding functions. To complement this thresholding-synapse, a novel current-to-voltage converter is also introduced. The characteristics of the well known sample-and-hold circuit as a weight memory scheme are analytically derived and simulation results suggest that a dummy compensated technique is required to obtain the required minimum of 8 bits weight resolution. Performance of the combined load and thresholding-synapse arrangement as well as an on-chip update/refresh mechanism are analytically evaluated and simulation studies on the Exclusive OR network as a benchmark problem are provided and indicate a useful level of functionality. Experimental results on the Exclusive OR network and a 'QRS' complex detector based on a 10:6:3 multilayer perceptron are also presented and demonstrate the potential of the proposed design techniques in emulating feedforward neural networks

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Time-domain optimization of amplifiers based on distributed genetic algorithms

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer EngineeringThe work presented in this thesis addresses the task of circuit optimization, helping the designer facing the high performance and high efficiency circuits demands of the market and technology evolution. A novel framework is introduced, based on time-domain analysis, genetic algorithm optimization, and distributed processing. The time-domain optimization methodology is based on the step response of the amplifier. The main advantage of this new time-domain methodology is that, when a given settling-error is reached within the desired settling-time, it is automatically guaranteed that the amplifier has enough open-loop gain, AOL, output-swing (OS), slew-rate (SR), closed loop bandwidth and closed loop stability. Thus, this simplification of the circuit‟s evaluation helps the optimization process to converge faster. The method used to calculate the step response expression of the circuit is based on the inverse Laplace transform applied to the transfer function, symbolically, multiplied by 1/s (which represents the unity input step). Furthermore, may be applied to transfer functions of circuits with unlimited number of zeros/poles, without approximation in order to keep accuracy. Thus, complex circuit, with several design/optimization degrees of freedom can also be considered. The expression of the step response, from the proposed methodology, is based on the DC bias operating point of the devices of the circuit. For this, complex and accurate device models (e.g. BSIM3v3) are integrated. During the optimization process, the time-domain evaluation of the amplifier is used by the genetic algorithm, in the classification of the genetic individuals. The time-domain evaluator is integrated into the developed optimization platform, as independent library, coded using C programming language. The genetic algorithms have demonstrated to be a good approach for optimization since they are flexible and independent from the optimization-objective. Different levels of abstraction can be optimized either system level or circuit level. Optimization of any new block is basically carried-out by simply providing additional configuration files, e.g. chromosome format, in text format; and the circuit library where the fitness value of each individual of the genetic algorithm is computed. Distributed processing is also employed to address the increasing processing time demanded by the complex circuit analysis, and the accurate models of the circuit devices. The communication by remote processing nodes is based on Message Passing interface (MPI). It is demonstrated that the distributed processing reduced the optimization run-time by more than one order of magnitude. Platform assessment is carried by several examples of two-stage amplifiers, which have been optimized and successfully used, embedded, in larger systems, such as data converters. A dedicated example of an inverter-based self-biased two-stage amplifier has been designed, laid-out and fabricated as a stand-alone circuit and experimentally evaluated. The measured results are a direct demonstration of the effectiveness of the proposed time-domain optimization methodology.Portuguese Foundation for the Science and Technology (FCT

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    CMOS current amplifiers : speed versus nonlinearity

    Get PDF
    This work deals with analogue integrated circuit design using various types of current-mode amplifiers. These circuits are analysed and realised using modern CMOS integration technologies. The dynamic nonlinearities of these circuits are discussed in detail as in the literature only linear nonidealities and static nonlinearities are conventionally considered. For the most important open-loop current-mode amplifier, the second-generation current-conveyor (CCII), a macromodel is derived that, unlike other reported macromodels, can accurately predict the common-mode behaviour in differential applications. Similarly, this model is used to describe the nonidealities of several other current-mode amplifiers because similar circuit structures are common in such amplifiers. With modern low-voltage CMOS-technologies, the current-mode operational amplifier and the high-gain current-conveyor (CCII∞) perform better than open-loop current-amplifiers. Similarly, unlike with conventional voltage-mode operational amplifiers, the large-signal settling behaviour of these two amplifier types does not degrade as CMOS-processes are scaled down. In this work, two 1 MHz 3rd -order low-pass continuous-time filters are realised with a 1.2 ÎŒm CMOS-process. These filters use a differential CCII∞ with linearised, dynamically biased output stages resulting in performance superior to most OTA-C filter realisations reported. Similarly, two logarithmic amplifier chips are designed and fabricated. The first circuit, implemented with a 1.2 ÎŒm BiCMOS-process, uses again a CCII∞. This circuit uses a pn-junction as a logarithmic feedback element. With a CCII∞ the constant gain-bandwidth product, typical of voltage-mode operational amplifiers, is avoided resulting in a constant 1 MHz bandwidth with a 60 dB signal amplitude range. The second current-mode logarithmic amplifier, based on piece-wise linear approximation of the logarithmic function by a cascade of limiting current amplifier stages, is realised in a standard 1.2 ÎŒm CMOS-process. The limiting level in these current amplifiers is less sensitive to process variation than in limiting voltage amplifiers resulting in exceptionally low temperature dependency of the logarithmic output signal. Additionally, along with this logarithmic amplifier a new current peak detectoris developed.reviewe

    Design et test pour la haute performance d'un convertisseur A/D basé sur l'architecture "subranging"

    Get PDF
    Les architectures des convertisseurs A/N -- Un nouveau A/n pour des applications à haute résolution et haute vitesse -- Un commutateur actif en mode courant pour des applications de hautes performances à faibles tensions -- Un nouveau convertisseur A/N "subranging" en mode courant pour des applications à haute vitesse -- Un nouveau BIST numérique intégré pour convertisseurs analogique-numérique

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step
    • 

    corecore