1,481 research outputs found

    3D Integral Field Observations of Ten Galactic Winds - I. Extended phase (>10 Myr) of mass/energy injection before the wind blows

    Full text link
    We present 3D spectroscopic observations of a sample of 10 nearby galaxies with the AAOmega-SPIRAL integral field spectrograph on the 3.9m AAT, the largest survey of its kind to date. The double-beam spectrograph provides spatial maps in a range of spectral diagnostics: [OIII] 5007, H-beta, Mg-b, NaD, [OI] 6300, H-alpha, [NII] 6583, [SII] 6717, 6731. All of the objects in our survey show extensive wind-driven filamentation along the minor axis, in addition to large-scale disk rotation. Our sample can be divided into either starburst galaxies or active galactic nuclei (AGN), although some objects appear to be a combination of these. The total ionizing photon budget available to both classes of galaxies is sufficient to ionise all of the wind-blown filamentation out to large radius. We find however that while AGN photoionisation always dominates in the wind filaments, this is not the case in starburst galaxies where shock ionisation dominates. This clearly indicates that after the onset of star formation, there is a substantial delay (> 10 Myr) before a starburst wind develops. We show why this behavior is expected by deriving ``ionisation'' and dynamical timescales for both AGNs and starbursts. We establish a sequence of events that lead to the onset of a galactic wind. The clear signature provided by the ionisation timescale is arguably the strongest evidence yet that the starburst phenomenon is an impulsive event. A well-defined ionisation timescale is not expected in galaxies with a protracted history of circumnuclear star formation. Our 3D data provide important templates for comparisons with high redshift galaxies.[Abridged]Comment: 43 pages, 30 figures, Accepted for publication in ApJ Jan-2010, Full resolution figures available from: http://www.aao.gov.au/AAO/local/www/rgs/work/winds/public/papers/SPIRAL_WINDS_hi-res.htm

    Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    Full text link
    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of rotating intrinsically magnetic supermassive compact objects in the centers of these quasars.Comment: 26 page manuscript with 2 tables and 2 figures, submitted to Astronomical Journa

    Characterizations of Veronese and Segre varieties

    Get PDF
    We survey the known and recent characterizations of Segre varieties and Veronesea varieties

    SynCLay: Interactive Synthesis of Histology Images from Bespoke Cellular Layouts

    Full text link
    Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells. SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironmet. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cell densities of different cells. We assess the generated images quantitatively and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task

    Projective Hilbert space structures at exceptional points

    Full text link
    A non-Hermitian complex symmetric 2x2 matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-expanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular behavior in the EP-limit can be resolved by projectively extending the original Hilbert space. The complementary normalization conditions correspond then to two different affine charts of this enlarged projective Hilbert space. Geometric phase and phase jump behavior are analyzed and the usefulness of the phase rigidity as measure for the distance to EP configurations is demonstrated. Finally, EP-related aspects of PT-symmetrically extended Quantum Mechanics are discussed and a conjecture concerning the quantum brachistochrone problem is formulated.Comment: 20 pages; discussion extended, refs added; bug correcte

    A spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q even

    Get PDF
    AbstractThis article presents a spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q even. We prove that for every integer k in an interval of, roughly, size [q2/10,9q2/10], there exists a maximal partial ovoid of size k on Q(4,q), q even. Since the generalized quadrangle W(q), q even, defined by a symplectic polarity of PG(3,q) is isomorphic to the generalized quadrangle Q(4,q), q even, the same result is obtained for maximal partial ovoids of W(q), q even. As equivalent results, the same spectrum result is obtained for minimal blocking sets with respect to planes of PG(3,q), q even, and for maximal partial 1-systems of lines on the Klein quadric Q+(5,q), q even

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 10262810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur

    Can WIMP spin dependent couplings explain DAMA data, in light of null results from other experiments?

    Get PDF
    Journal ArticleWe examine whether the annual modulation found by the DAMA dark matter experiment can be explained by Weakly Interacting Massive Particles (WIMPs), in light of new null results from other experiments. CDMS II has already ruled out most WIMP-nucleus spin-independent couplings as an explanation for DAMA data. Hence we here focus on spin-dependent (axial vector; SD) couplings of WIMPs to nuclei.We expand upon previous work by (i) considering the general case of coupling to both protons and neutrons and (ii) incorporating bounds from all existing experiments.We note the surprising fact that CMDS II places one of the strongest bounds on the WIMP-neutron cross section, and show that SDWIMP-neutron scattering alone is excluded.We also show that SDWIMP-proton scattering alone is allowed only for WIMP masses in the 5-13 GeV range. For the general case of coupling to both protons and neutrons, we find that, for WIMP masses above 13 GeV and below 5 GeV, there is no region of parameter space that is compatible with DAMA and all other experiments. In the range (5-13) GeV, we find acceptable regions of parameter space, including ones in which the WIMP-neutron coupling is comparable to the WIMP-proton coupling
    corecore