3,807 research outputs found

    Disjoint-union partial algebras

    Get PDF
    Disjoint union is a partial binary operation returning the union of two sets if they are disjoint and undefined otherwise. A disjoint-union partial algebra of sets is a collection of sets closed under disjoint unions, whenever they are defined. We provide a recursive first-order axiomatisation of the class of partial algebras isomorphic to a disjoint-union partial algebra of sets but prove that no finite axiomatisation exists. We do the same for other signatures including one or both of disjoint union and subset complement, another partial binary operation we define. Domain-disjoint union is a partial binary operation on partial functions, returning the union if the arguments have disjoint domains and undefined otherwise. For each signature including one or both of domain-disjoint union and subset complement and optionally including composition, we consider the class of partial algebras isomorphic to a collection of partial functions closed under the operations. Again the classes prove to be axiomatisable, but not finitely axiomatisable, in first-order logic. We define the notion of pairwise combinability. For each of the previously considered signatures, we examine the class isomorphic to a partial algebra of sets/partial functions under an isomorphism mapping arbitrary suprema of pairwise combinable sets to the corresponding disjoint unions. We prove that for each case the class is not closed under elementary equivalence. However, when intersection is added to any of the signatures considered, the isomorphism class of the partial algebras of sets is finitely axiomatisable and in each case we give such an axiomatisation.Comment: 30 page

    Nominal Abstraction

    Get PDF
    Recursive relational specifications are commonly used to describe the computational structure of formal systems. Recent research in proof theory has identified two features that facilitate direct, logic-based reasoning about such descriptions: the interpretation of atomic judgments through recursive definitions and an encoding of binding constructs via generic judgments. However, logics encompassing these two features do not currently allow for the definition of relations that embody dynamic aspects related to binding, a capability needed in many reasoning tasks. We propose a new relation between terms called nominal abstraction as a means for overcoming this deficiency. We incorporate nominal abstraction into a rich logic also including definitions, generic quantification, induction, and co-induction that we then prove to be consistent. We present examples to show that this logic can provide elegant treatments of binding contexts that appear in many proofs, such as those establishing properties of typing calculi and of arbitrarily cascading substitutions that play a role in reducibility arguments.Comment: To appear in the Journal of Information and Computatio

    Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers

    Full text link
    The first problem addressed by this article is the enumeration of some families of pattern-avoiding inversion sequences. We solve some enumerative conjectures left open by the foundational work on the topics by Corteel et al., some of these being also solved independently by Lin, and Kim and Lin. The strength of our approach is its robustness: we enumerate four families F1F2F3F4F_1 \subset F_2 \subset F_3 \subset F_4 of pattern-avoiding inversion sequences ordered by inclusion using the same approach. More precisely, we provide a generating tree (with associated succession rule) for each family FiF_i which generalizes the one for the family Fi1F_{i-1}. The second topic of the paper is the enumeration of a fifth family F5F_5 of pattern-avoiding inversion sequences (containing F4F_4). This enumeration is also solved \emph{via} a succession rule, which however does not generalize the one for F4F_4. The associated enumeration sequence, which we call the \emph{powered Catalan numbers}, is quite intriguing, and further investigated. We provide two different succession rules for it, denoted ΩpCat\Omega_{pCat} and Ωsteady\Omega_{steady}, and show that they define two types of families enumerated by powered Catalan numbers. Among such families, we introduce the \emph{steady paths}, which are naturally associated with Ωsteady\Omega_{steady}. They allow us to bridge the gap between the two types of families enumerated by powered Catalan numbers: indeed, we provide a size-preserving bijection between steady paths and valley-marked Dyck paths (which are naturally associated with ΩpCat\Omega_{pCat}). Along the way, we provide several nice connections to families of permutations defined by the avoidance of vincular patterns, and some enumerative conjectures.Comment: V2 includes modifications suggested by referees (in particular, a much shorter Section 3, to account for arXiv:1706.07213

    Crossings and nestings in colored set partitions

    Full text link
    Chen, Deng, Du, Stanley, and Yan introduced the notion of kk-crossings and kk-nestings for set partitions, and proved that the sizes of the largest kk-crossings and kk-nestings in the partitions of an nn-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an rr-element set (which we call \emph{rr-colored set partitions}). In this context, a kk-crossing or kk-nesting is a sequence of arcs, all with the same color, which form a kk-crossing or kk-nesting in the usual sense. After showing that the sizes of the largest crossings and nestings in colored set partitions likewise have a symmetric joint distribution, we consider several related enumeration problems. We prove that rr-colored set partitions with no crossing arcs of the same color are in bijection with certain paths in \NN^r, generalizing the correspondence between noncrossing (uncolored) set partitions and 2-Motzkin paths. Combining this with recent work of Bousquet-M\'elou and Mishna affords a proof that the sequence counting noncrossing 2-colored set partitions is P-recursive. We also discuss how our methods extend to several variations of colored set partitions with analogous notions of crossings and nestings.Comment: 25 pages; v2: material revised and condensed; v3 material further revised, additional section adde

    The Structure of n-Point One-Loop Open Superstring Amplitudes

    Get PDF
    In this article we present the worldsheet integrand for one-loop amplitudes in maximally supersymmetric superstring theory involving any number n of massless open string states. The polarization dependence is organized into the same BRST invariant kinematic combinations which also govern the leading string correction to tree level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number S_3^{n-1} of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang Mills theory and on the other hand the color tensors at quadratic alpha prime order of the color dressed tree amplitude.Comment: 75 pp, 8 figs, harvmac TeX, v2: published versio

    Pattern avoidance for alternating permutations and reading words of tableaux

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 67-69).We consider a variety of questions related to pattern avoidance in alternating permutations and generalizations thereof. We give bijective enumerations of alternating permutations avoiding patterns of length 3 and 4, of permutations that are the reading words of a "thickened staircase" shape (or equivalently of permutations with descent set {k, 2k, 3k, . . .}) avoiding a monotone pattern, and of the reading words of Young tableaux of any skew shape avoiding any of the patterns 132, 213, 312, or 231. Our bijections include a simple bijection involving binary trees, variations on the Robinson-Schensted-Knuth correspondence, and recursive bijections established via isomorphisms of generating trees.by Joel Brewster Lewis.Ph.D
    corecore