34 research outputs found

    On nearness measures in fuzzy relational data models

    Get PDF
    AbstractIt has been widely recognized that the imprecision and incompleteness inherent in real-world data suggest a fuzzy extension for information management systems. Various attempts to enhance these systems by fuzzy extensions can be found in the literature. Varying approaches concerning the fuzzification of the concept of a relation are possible, two of which are referred to in this article as the generalized fuzzy approach and the fuzzy-set relation approach. In these enhanced models, items can no longer be retrieved by merely using equality-check operations between constants; instead, operations based on some kind of nearness measures have to be developed. In fact, these models require such a nearness measure to be established for each domain for the evaluation of queries made upon them. An investigation of proposed nearness measures, often fuzzy equivalences, is conducted. The unnaturalness and impracticality of these measures leads to the development of a new measure: the resemblance relation, which is defined to be a fuzzified version of a tolerance relation. Various aspects of this relation are analyzed and discussed. It is also shown how the resemblance relation can be used to reduce redundancy in fuzzy relational database systems

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov
    corecore