220,403 research outputs found

    Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms

    Get PDF
    This work studies the aggregation operators on the set of all possible membership degrees of typical hesitant fuzzy sets, which we refer to as H, as well as the action of H-automorphisms which are defined over the set of all finite non-empty subsets of the unitary interval. In order to do so, the partial order ≤H, based on α-normalization, is introduced, leading to a comparison based on selecting the greatest membership degrees of the related fuzzy sets. Additionally, the idea of interval representation is extended to the context of typical hesitant aggregation functions named as the H-representation. As main contribution, we consider the class of finite hesitant triangular norms, studying their properties and analyzing the H-conjugate functions over such operators. © 2013 Elsevier Inc. All rights reserved.Peer Reviewe

    Learning Aggregation Functions

    Full text link
    Learning on sets is increasingly gaining attention in the machine learning community, due to its widespread applicability. Typically, representations over sets are computed by using fixed aggregation functions such as sum or maximum. However, recent results showed that universal function representation by sum- (or max-) decomposition requires either highly discontinuous (and thus poorly learnable) mappings, or a latent dimension equal to the maximum number of elements in the set. To mitigate this problem, we introduce a learnable aggregation function (LAF) for sets of arbitrary cardinality. LAF can approximate several extensively used aggregators (such as average, sum, maximum) as well as more complex functions (e.g., variance and skewness). We report experiments on semi-synthetic and real data showing that LAF outperforms state-of-the-art sum- (max-) decomposition architectures such as DeepSets and library-based architectures like Principal Neighborhood Aggregation, and can be effectively combined with attention-based architectures.Comment: Extended version (with proof appendix) of paper that is to appear in Proceedings of IJCAI 202

    Constraint-wish and satisfied-dissatisfied: an overview of two approaches for dealing with bipolar querying

    Get PDF
    In recent years, there has been an increasing interest in dealing with user preferences in flexible database querying, expressing both positive and negative information in a heterogeneous way. This is what is usually referred to as bipolar database querying. Different frameworks have been introduced to deal with such bipolarity. In this chapter, an overview of two approaches is given. The first approach is based on mandatory and desired requirements. Hereby the complement of a mandatory requirement can be considered as a specification of what is not desired at all. So, mandatory requirements indirectly contribute to negative information (expressing what the user does not want to retrieve), whereas desired requirements can be seen as positive information (expressing what the user prefers to retrieve). The second approach is directly based on positive requirements (expressing what the user wants to retrieve), and negative requirements (expressing what the user does not want to retrieve). Both approaches use pairs of satisfaction degrees as the underlying framework but have different semantics, and thus also different operators for criteria evaluation, ranking, aggregation, etc

    Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory

    Get PDF
    In this paper we propose an extension of the well-known OWA functions introduced by Yager to interval-valued (IVFS) and Atanassov’s intuitionistic (AIFS) fuzzy set theory. We first extend the arithmetic and the quasi-arithmetic mean using the arithmetic operators in IVFS and AIFS theory and investigate under which conditions these means are idempotent. Since on the unit interval the construction of the OWA function involves reordering the input values, we propose a way of transforming the input values in IVFS and AIFS theory to a new list of input values which are now ordered

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges
    corecore