51,342 research outputs found

    Effects and Propositions

    Full text link
    The quantum logical and quantum information-theoretic traditions have exerted an especially powerful influence on Bub's thinking about the conceptual foundations of quantum mechanics. This paper discusses both the quantum logical and information-theoretic traditions from the point of view of their representational frameworks. I argue that it is at this level, at the level of its framework, that the quantum logical tradition has retained its centrality to Bub's thought. It is further argued that there is implicit in the quantum information-theoretic tradition a set of ideas that mark a genuinely new alternative to the framework of quantum logic. These ideas are of considerable interest for the philosophy of quantum mechanics, a claim which I defend with an extended discussion of their application to our understanding of the philosophical significance of the no hidden variable theorem of Kochen and Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations of Physic

    Tiered Objects

    Get PDF
    We investigate the foundations of reasoning over infinite data structures by means of set-theoretical structures arising in the sheaf-theoretic semantics of higher-order intuitionistic logic. Our approach focuses on a natural notion of tiering involving an operation of restriction of elements to levels forming a complete Heyting algebra. We relate these tiered objects to final coalgebras and initial algebras of a wide class of endofunctors of the category of sets, and study their order and convergence properties. As a sample application, we derive a general proof principle for tiered objects

    Librationist cum classical set theories

    Full text link
    A librationist set theoretic system \Pfund, which is inter alia geared to deal with set theoretic paradoxes in new ways, is developed. It descends from work in a semantic setting, for truth, initiated by by Kripke, Herzberger and Gupta. \Pfund \ extends the author's contribution in Librationist closures of the paradoxes in Logic and Logical Philosophy 21(4), 323-361, 2012. It is shown that \Pfund \ provides an interpretation of a set theory published by D. Scott in More on the axiom of extensionality, in Bar-Hillel et alia, Essays on the foundations of mathematics, North-Holland Publishing Company, 1961, 115-131. Given this, \Pfund \ also obtains an interpretation of ZFC vi results of von Neumann on regularity in 1929, and G\"odel on the Axiom og Choice in 1938. However, \Pfund \ offers alternative ways to include choice and regularity by means of principles which are informative, and natural. \Pfund \ retains the idea, of Bj{\o}rdal 2012, that the set theoretic universe is countable. But the set within which ZF is interpreted "believes" that there are sets which are not countable. The situation can be resolved much as by Skolem, though one need not suggest that the notion of 'set' is imprecice: for the bijection from the set of finite von Neumann ordinals to the full universe is itself not a member of a classical set theory

    Logical Information Theory: New Logical Foundations for Information Theory

    Get PDF
    here is a new theory of information based on logic. The definition of Shannon entropy as well as the notions on joint, conditional, and mutual entropy as defined by Shannon can all be derived by a uniform transformation from the corresponding formulas of logical information theory. Information is first defined in terms of sets of distinctions without using any probability measure. When a probability measure is introduced, the logical entropies are simply the values of the (product) probability measure on the sets of distinctions. The compound notions of joint, conditional, and mutual entropies are obtained as the values of the measure, respectively, on the union, difference, and intersection of the sets of distinctions. These compound notions of logical entropy satisfy the usual Venn diagram relationships (e.g., inclusion-exclusion formulas) since they are values of a measure (in the sense of measure theory). The uniform transformation into the formulas for Shannon entropy is linear so it explains the long-noted fact that the Shannon formulas satisfy the Venn diagram relations--as an analogy or mnemonic--since Shannon entropy is not a measure (in the sense of measure theory) on a given set. What is the logic that gives rise to logical information theory? Partitions are dual (in a category-theoretic sense) to subsets, and the logic of partitions was recently developed in a dual/parallel relationship to the Boolean logic of subsets (the latter being usually mis-specified as the special case of "propositional logic"). Boole developed logical probability theory as the normalized counting measure on subsets. Similarly the normalized counting measure on partitions is logical entropy--when the partitions are represented as the set of distinctions that is the complement to the equivalence relation for the partition. In this manner, logical information theory provides the set-theoretic and measure-theoretic foundations for information theory. The Shannon theory is then derived by the transformation that replaces the counting of distinctions with the counting of the number of binary partitions (bits) it takes, on average, to make the same distinctions by uniquely encoding the distinct elements--which is why the Shannon theory perfectly dovetails into coding and communications theory

    A new foundational crisis in mathematics, is it really happening?

    Full text link
    The article reconsiders the position of the foundations of mathematics after the discovery of HoTT. Discussion that this discovery has generated in the community of mathematicians, philosophers and computer scientists might indicate a new crisis in the foundation of mathematics. By examining the mathematical facts behind HoTT and their relation with the existing foundations, we conclude that the present crisis is not one. We reiterate a pluralist vision of the foundations of mathematics. The article contains a short survey of the mathematical and historical background needed to understand the main tenets of the foundational issues.Comment: Final versio

    Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism

    Get PDF
    This essay examines the philosophical significance of Ω\Omega-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω\Omega-logical validity can then be countenanced within a coalgebraic logic, and Ω\Omega-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω\Omega-logical validity correspond to those of second-order logical consequence, Ω\Omega-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi
    corecore