450 research outputs found

    An overview of population-based algorithms for multi-objective optimisation

    Get PDF
    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided

    Swarm lexicographic goal programming for fuzzy open shop scheduling

    Get PDF
    In this work we consider a multiobjective open shop scheduling problem with uncertain processing times and flexible due dates, both modelled using fuzzy sets. We adopt a goal programming model based on lexicographic multiobjective optimisation of both makespan and due-date satisfaction and propose a particle swarm algorithm to solve the resulting problem. We present experimental results which show that this multiobjective approach achieves as good results as single-objective algorithms for the objective with the highest priority, while greatly improving on the second objectiv

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    A bi-objective hybrid vibration damping optimization model for synchronous flow shop scheduling problems

    Get PDF
    Flow shop scheduling deals with the determination of the optimal sequence of jobs processing on machines in a fixed order with the main objective consisting of minimizing the completion time of all jobs (makespan). This type of scheduling problem appears in many industrial and production planning applications. This study proposes a new bi-objective mixed-integer programming model for solving the synchronous flow shop scheduling problems with completion time. The objective functions are the total makespan and the sum of tardiness and earliness cost of blocks. At the same time, jobs are moved among machines through a synchronous transportation system with synchronized processing cycles. In each cycle, the existing jobs begin simultaneously, each on one of the machines, and after completion, wait until the last job is completed. Subsequently, all the jobs are moved concurrently to the next machine. Four algorithms, including non-dominated sorting genetic algorithm (NSGA II), multi-objective simulated annealing (MOSA), multi-objective particle swarm optimization (MOPSO), and multi-objective hybrid vibration-damping optimization (MOHVDO), are used to find a near-optimal solution for this NP-hard problem. In particular, the proposed hybrid VDO algorithm is based on the imperialist competitive algorithm (ICA) and the integration of a neighborhood creation technique. MOHVDO and MOSA show the best performance among the other algorithms regarding objective functions and CPU Time, respectively. Thus, the results from running small-scale and medium-scale problems in MOHVDO and MOSA are compared with the solutions obtained from the epsilon-constraint method. In particular, the error percentage of MOHVDO’s objective functions is less than 2% compared to the epsilon-constraint method for all solved problems. Besides the specific results obtained in terms of performance and, hence, practical applicability, the proposed approach fills a considerable gap in the literature. Indeed, even though variants of the aforementioned meta-heuristic algorithms have been largely introduced in multi-objective environments, a simultaneous implementation of these algorithms as well as a compared study of their performance when solving flow shop scheduling problems has been so far overlooked
    • …
    corecore