103,530 research outputs found

    On properties of (weakly) small groups

    Full text link
    A group is small if it has countably many complete nn-types over the empty set for each natural number n. More generally, a group GG is weakly small if it has countably many complete 1-types over every finite subset of G. We show here that in a weakly small group, subgroups which are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary : a weakly small group with simple theory has an infinite definable finite-by-abelian subgoup. Secondly, in a group with simple theory, a normal solvable group A of derived length n is contained in an A-definable almost solvable group of class n

    Pauli topological subsystem codes from Abelian anyon theories

    Full text link
    We construct Pauli topological subsystem codes characterized by arbitrary two-dimensional Abelian anyon theories--this includes anyon theories with degenerate braiding relations and those without a gapped boundary to the vacuum. Our work both extends the classification of two-dimensional Pauli topological subsystem codes to systems of composite-dimensional qudits and establishes that the classification is at least as rich as that of Abelian anyon theories. We exemplify the construction with topological subsystem codes defined on four-dimensional qudits based on the Z4(1)\mathbb{Z}_4^{(1)} anyon theory with degenerate braiding relations and the chiral semion theory--both of which cannot be captured by topological stabilizer codes. The construction proceeds by "gauging out" certain anyon types of a topological stabilizer code. This amounts to defining a gauge group generated by the stabilizer group of the topological stabilizer code and a set of anyonic string operators for the anyon types that are gauged out. The resulting topological subsystem code is characterized by an anyon theory containing a proper subset of the anyons of the topological stabilizer code. We thereby show that every Abelian anyon theory is a subtheory of a stack of toric codes and a certain family of twisted quantum doubles that generalize the double semion anyon theory. We further prove a number of general statements about the logical operators of translation invariant topological subsystem codes and define their associated anyon theories in terms of higher-form symmetries.Comment: 67 + 35 pages, single column forma

    Morita homotopy theory of C*-categories

    Full text link
    In this article we establish the foundations of the Morita homotopy theory of C*-categories. Concretely, we construct a cofibrantly generated simplicial symmetric monoidal Quillen model structure M_Mor on the category C*cat1 of small unital C*-categories. The weak equivalences are the Morita equivalences and the cofibrations are the *-functors which are injective on objects. As an application, we obtain an elegant description of the Brown-Green-Rieffel Picard group in the associated Morita homotopy category Ho(M_Mor). We then prove that the Morita homotopy category is semi-additive. By group completing the induced abelian monoid structure at each Hom-set we obtain an additive category Ho(M_Mor)^{-1} and a canonical functor C*cat1 {\to} Ho(M_Mor)^{-1} which is characterized by two simple properties: inversion of Morita equivalences and preservation of all finite products. Finally, we prove that the classical Grothendieck group functor becomes co-represented in Ho(M_Mor)^{-1} by the tensor unit object.Comment: 35 page
    • …
    corecore