9,009 research outputs found

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    A superior edge preserving filter with a systematic analysis

    Get PDF
    A new, adaptive, edge preserving filter for use in image processing is presented. It had superior performance when compared to other filters. Termed the contiguous K-average, it aggregates pixels by examining all pixels contiguous to an existing cluster and adding the pixel closest to the mean of the existing cluster. The process is iterated until K pixels were accumulated. Rather than simply compare the visual results of processing with this operator to other filters, some approaches were developed which allow quantitative evaluation of how well and filter performs. Particular attention is given to the standard deviation of noise within a feature and the stability of imagery under iterative processing. Demonstrations illustrate the performance of several filters to discriminate against noise and retain edges, the effect of filtering as a preprocessing step, and the utility of the contiguous K-average filter when used with remote sensing data

    Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction

    No full text
    International audienceThis paper addresses the gray-level image representation ability of the Fourier-Mellin Transform (FMT) for pattern recognition, reconstruction and image database retrieval. The main practical di±culty of the FMT lies in the accuracy and e±ciency of its numerical approximation and we propose three estimations of its analytical extension. Comparison of these approximations is performed from discrete and ¯nite-extent sets of Fourier- Mellin harmonics by means of experiments in: (i) image reconstruction via both visual inspection and the computation of a reconstruction error; and (ii) pattern recognition and discrimination by using a complete and convergent set of features invariant under planar similarities. Experimental results on real gray-level images show that it is possible to recover an image to within a speci¯ed degree of accuracy and to classify objects reliably even when a large set of descriptors is used. Finally, an example will be given, illustrating both theoretical and numerical results in the context of content-based image retrieval

    Moduli spaces of G2 manifolds

    Full text link
    This paper is a review of current developments in the study of moduli spaces of G2 manifolds. G2 manifolds are 7-dimensional manifolds with the exceptional holonomy group G2. Although they are odd-dimensional, in many ways they can be considered as an analogue of Calabi-Yau manifolds in 7 dimensions. They play an important role in physics as natural candidates for supersymmetric vacuum solutions of M-theory compactifications. Despite the physical motivation, many of the results are of purely mathematical interest. Here we cover the basics of G2 manifolds, local deformation theory of G2 structures and the local geometry of the moduli spaces of G2 structures.Comment: 31 pages, 2 figure

    Edge and Line Feature Extraction Based on Covariance Models

    Get PDF
    age segmentation based on contour extraction usually involves three stages of image operations: feature extraction, edge detection and edge linking. This paper is devoted to the first stage: a method to design feature extractors used to detect edges from noisy and/or blurred images. The method relies on a model that describes the existence of image discontinuities (e.g. edges) in terms of covariance functions. The feature extractor transforms the input image into a “log-likelihood ratio” image. Such an image is a good starting point of the edge detection stage since it represents a balanced trade-off between signal-to-noise ratio and the ability to resolve detailed structures. For 1-D signals, the performance of the edge detector based on this feature extractor is quantitatively assessed by the so called “average risk measure”. The results are compared with the performances of 1-D edge detectors known from literature. Generalizations to 2-D operators are given. Applications on real world images are presented showing the capability of the covariance model to build edge and line feature extractors. Finally it is shown that the covariance model can be coupled to a MRF-model of edge configurations so as to arrive at a maximum a posteriori estimate of the edges or lines in the image
    corecore