736 research outputs found

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    New approaches to optimization in aerospace conceptual design

    Get PDF
    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks

    Multi-objective optimal design of steel trusses in unstructured design domains

    Get PDF
    Researchers have applied genetic algorithms (GAs) and other heuristic optimization methods to perform truss optimization in recent years. Although a substantial amount of research has been performed on the optimization of truss member sizes, nodal coordinates, and member connections, research that seeks to simultaneously optimize the topology, geometry, and member sizes of trusses is still uncommon. In addition, most of the previous research is focused on the problem domains that are limited to a structured domain, which is defined by a fixed number of nodes, members, load locations, and load magnitudes. The objective of this research is to develop a computational method that can design efficient roof truss systems. This method provides an engineer with a set of near-optimal trusses for a specific unstructured problem domain. The unstructured domain only prescribes the magnitude of loading and the support locations. No other structural information concerning the number or locations of nodes and the connectivity of members is defined. An implicit redundant representation (IRR) GA (Raich 1999) is used in this research to evolve a diverse set of near-optimal truss designs within the specified domain that have varying topology, geometry, and sizes. IRR GA allows a Pareto-optimal set to be identified within a single trial. These truss designs reflect the tradeoffs that occur between the multiple objectives optimized. Finally, the obtained Pareto-optimal curve will be used to provide design engineers with a range of highly fit conceptual designs from which they can select their final design. The quality of the designs obtained by the proposed multi-objective IRR GA method will be evaluated by comparing the trusses evolved with trusses that were optimized using local perturbation methods and by trusses designed by engineers using a trial and error approach. The results presented show that the method developed is very effective in simultaneously optimizing the topology, geometry, and size of trusses for multiple objectives

    Application of Genetic Algorithm in Multi-objective Optimization of an Indeterminate Structure with Discontinuous Space for Support Locations

    Get PDF
    In this thesis, an indeterminate structure was developed with multiple competing objectives including the equalization of the load distribution among the supports while maximizing the stability of the structure. Two different coding algorithms named “Continuous Method” and “Discretized Method” were used to solve the optimal support locations using Genetic Algorithms (GAs). In continuous method, a continuous solution space was considered to find optimal support locations. The failure of this method to stick to the acceptable optimal solution led towards the development of the second method. The latter approach divided the solution space into rectangular grids, and GAs acted on the index number of the nodal points to converge to the optimality. The average value of the objective function in the discretized method was found to be 0.147 which was almost onethird of that obtained by the continuous method. The comparison based on individual components of the objective function also proved that the proposed method outperformed the continuous method. The discretized method also showed faster convergence to the optima. Three circular discontinuities were added to the structure to make it more realistic and three different penalty functions named flat, linear and non-linear penalty were used to handle the constraints. The performance of the two methods was observed with the penalty functions while increasing the radius of the circles by 25% and 50% which showed no significant difference. Later, the discretized method was coded to eliminate the discontinuous area from the solution space which made the application of the penalty functions redundant. A paired t-test (α=5%) showed no statistical difference between these two methods. Finally, to make the proposed method compatible with irregular shaped discontinuous areas, “FEA Integrated Coded Discretized Method (FEAICDM)” was developed. The manual elimination of the infeasible areas from the candidate surface was replaced by the nodal points of the mesh generated by Solid Works. A paired t-test (α=5%) showed no statistical difference between these two methods. Though FEAICDM was applied only to a class of problem, it can be concluded that FEAICDM is more robust and efficient than the continuous method for a class of constrained optimization problem

    Optimisation and Decision Support during the Conceptual Stage of Building Design

    Get PDF
    Merged with duplicate record 10026.1/726 on 28.02.2017 by CS (TIS)Modern building design is complex and involves many different disciplines operating in a fragmented manner. Appropriate computer-based decision support (DS) tools are sought that can raise the level of integration of different activities at the conceptual stage, in order to help create better designs solutions. This project investigates opportunities that exist for using techniques based upon the Genetic Algorithm (GA) to support critical activities of conceptual building design (CBD). Collective independent studies have shown that the GA is a powerful optimisation and exploratory search technique with widespread application. The GA is essentially very simple yet it offers robustness and domain independence. The GA efficiently searches a domain to exploit highly suitable information. It maintains multiple solutions to problems simultaneously and is well suited to non-linear problems and those of a discontinuous nature found in engineering design. The literature search first examines traditional approaches to supporting conceptual design. Existing GA techniques and applications are discussed which include pioneering studies in the field of detailed structural design. Broader GA studies are also reported which have demonstrated possibilities for investigating geometrical, topological and member size variation. The tasks and goals of conceptual design are studied. A rationale is introduced, aimed at enabling the GA to be applied in a manner that provides the most effective support to the designer. Numerical experiments with floor planning are presented. These studies provide a basic foundation for a subsequent design support system (DSS) capable of generating structural design concepts. A hierarchical Structured GA (SGA) created by Dasgupta et al [1] is investigated to support the generation of diverse structural design concepts. The SGA supports variation in the size, shape and structural configuration of a building and in the choice of structural frame type and floor system. The benefits and limitations of the SGA approach are discussed. The creation of a prototype DSS system, abritrarily called Designer-Pro (DPRO), is described. A detailed building design model is introduced which is required for design development and appraisal. Simplifications, design rationale and generic component modelling are mentioned. A cost-based single criteria optimisation problem (SCOP) is created in which other constraints are represented as design parameters. The thesis describes the importance of the object-oriented programming (OOP) paradigm for creating a versatile design model and the need for complementary graphical user interface (GUI) tools to provide human-computer interaction (HCI) capabilities for control and intelligent design manipulation. Techniques that increase flexibility in the generation and appraisal of concept are presented. Tools presented include a convergence plot of design solutions that supports cursor-interrogation to reveal the details of individual concepts. The graph permits study of design progression, or evolution of optimum design solutions. A visualisation tool is also presented. The DPRO system supports multiple operating modes, including single-design appraisal and enumerative search (ES). Case study examples are provided which demonstrate the applicability of the DPRO system to a range of different design scenarios. The DPRO system performs well in all tests. A parametric study demonstrates the potential of the system for DS. Limitations of the current approach and opportunities to broaden the study form part of the scope for further work. Some suggestions for further study are made, based upon newly-emerging techniques
    • …
    corecore