1,087 research outputs found

    Fourier Domain Decoding Algorithm of Non-Binary LDPC codes for Parallel Implementation

    Full text link
    For decoding non-binary low-density parity check (LDPC) codes, logarithm-domain sum-product (Log-SP) algorithms were proposed for reducing quantization effects of SP algorithm in conjunction with FFT. Since FFT is not applicable in the logarithm domain, the computations required at check nodes in the Log-SP algorithms are computationally intensive. What is worth, check nodes usually have higher degree than variable nodes. As a result, most of the time for decoding is used for check node computations, which leads to a bottleneck effect. In this paper, we propose a Log-SP algorithm in the Fourier domain. With this algorithm, the role of variable nodes and check nodes are switched. The intensive computations are spread over lower-degree variable nodes, which can be efficiently calculated in parallel. Furthermore, we develop a fast calculation method for the estimated bits and syndromes in the Fourier domain.Comment: To appear in IEICE Trans. Fundamentals, vol.E93-A, no.11 November 201

    Analysis and Design of Binary Message-Passing Decoders

    Full text link
    Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived.Comment: 8 pages, 6 figures, submitted to the IEEE Transactions on Communication

    Finite Length Analysis of LDPC Codes

    Full text link
    In this paper, we study the performance of finite-length LDPC codes in the waterfall region. We propose an algorithm to predict the error performance of finite-length LDPC codes over various binary memoryless channels. Through numerical results, we find that our technique gives better performance prediction compared to existing techniques.Comment: Submitted to WCNC 201

    Multilevel Decoders Surpassing Belief Propagation on the Binary Symmetric Channel

    Full text link
    In this paper, we propose a new class of quantized message-passing decoders for LDPC codes over the BSC. The messages take values (or levels) from a finite set. The update rules do not mimic belief propagation but instead are derived using the knowledge of trapping sets. We show that the update rules can be derived to correct certain error patterns that are uncorrectable by algorithms such as BP and min-sum. In some cases even with a small message set, these decoders can guarantee correction of a higher number of errors than BP and min-sum. We provide particularly good 3-bit decoders for 3-left-regular LDPC codes. They significantly outperform the BP and min-sum decoders, but more importantly, they achieve this at only a fraction of the complexity of the BP and min-sum decoders.Comment: 5 pages, in Proc. of 2010 IEEE International Symposium on Information Theory (ISIT
    • …
    corecore