6,425 research outputs found

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner’s side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.’s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a “graceful termination” of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    Implementing Session Centered Calculi

    Get PDF
    Recently, specific attention has been devoted to the development of service oriented process calculi. Besides the foundational aspects, it is also interesting to have prototype implementations for them in order to assess usability and to minimize the gap between theory and practice. Typically, these implementations are done in Java taking advantage of its mechanisms supporting network applications. However, most of the recurrent features of service oriented applications are re-implemented from scratch. In this paper we show how to implement a service oriented calculus, CaSPiS (Calculus of Services with Pipelines and Sessions) using the Java framework IMC, where recurrent mechanisms for network applications are already provided. By using the session oriented and pattern matching communication mechanisms provided by IMC, it is relatively simple to implement in Java all CaSPiS abstractions and thus to easily write the implementation in Java of a CaSPiS process

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Hierarchical models for service-oriented systems

    Get PDF
    We present our approach to the denotation and representation of hierarchical graphs: a suitable algebra of hierarchical graphs and two domains of interpretations. Each domain of interpretation focuses on a particular perspective of the graph hierarchy: the top view (nested boxes) is based on a notion of embedded graphs while the side view (tree hierarchy) is based on gs-graphs. Our algebra can be understood as a high-level language for describing such graphical models, which are well suited for defining graphical representations of service-oriented systems where nesting (e.g. sessions, transactions, locations) and linking (e.g. shared channels, resources, names) are key aspects

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax

    Heart Failure Monitoring System Based on Wearable and Information Technologies

    Get PDF
    In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilitie

    CaSPiS: A Calculus of Sessions, Pipelines and Services

    Get PDF
    Service-oriented computing is calling for novel computational models and languages with well disciplined primitives for client-server interaction, structured orchestration and unexpected events handling. We present CaSPiS, a process calculus where the conceptual abstractions of sessioning and pipelining play a central role for modelling service-oriented systems. CaSPiS sessions are two-sided, uniquely named and can be nested. CaSPiS pipelines permit orchestrating the flow of data produced by different sessions. The calculus is also equipped with operators for handling (unexpected) termination of the partner's side of a session. Several examples are presented to provide evidence of the flexibility of the chosen set of primitives. One key contribution is a fully abstract encoding of Misra et al.'s orchestration language Orc. Another main result shows that in CaSPiS it is possible to program a graceful termination of nested sessions, which guarantees that no session is forced to hang forever after the loss of its partner

    Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach.

    Get PDF
    Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a "containerized" approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data "Levels," each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org)

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects
    • …
    corecore