13,561 research outputs found

    Session-based Recommendation with Graph Neural Networks

    Full text link
    The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graph-structured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.Comment: 9 pages, 4 figures, accepted by AAAI Conference on Artificial Intelligence (AAAI-19

    Dynamic Graph Attention-Aware Networks for Session-Based Recommendation

    Get PDF
    Graph convolutional neural networks have attracted increasing attention in recommendation system fields because of their ability to represent the interactive relations between users and items. At present, there are many session-based methods based on graph neural networks. For example, SR-GNN establishes a user’s session graph based on the user’s sequential behavior to predict the user’s next click. Although these session-based recommendation methods modeling the user’s interaction with items as a graph, these methods have achieved good performance in improving the accuracy of the recommendation. However, most existing models ignore the items’ relationship among sessions. To efficiently learn the deep connections between graph-structured items, we devised a dynamic attention-aware network (DYAGNN) to model the user’s potential behavior sequence for the recommendation. Extensive experiments have been conducted on two real-world datasets, the experimental results demonstrate that our method achieves good results in capturing user attention perception

    TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation

    Full text link
    Session-based recommendation nowadays plays a vital role in many websites, which aims to predict users' actions based on anonymous sessions. There have emerged many studies that model a session as a sequence or a graph via investigating temporal transitions of items in a session. However, these methods compress a session into one fixed representation vector without considering the target items to be predicted. The fixed vector will restrict the representation ability of the recommender model, considering the diversity of target items and users' interests. In this paper, we propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation. In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items. The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model. Moreover, TAGNN harnesses the power of graph neural networks to capture rich item transitions in sessions. Comprehensive experiments conducted on real-world datasets demonstrate its superiority over state-of-the-art methods.Comment: 5 pages, accepted to SIGIR 2020, authors' versio

    SR-GCL: Session-Based Recommendation with Global Context Enhanced Augmentation in Contrastive Learning

    Full text link
    Session-based recommendations aim to predict the next behavior of users based on ongoing sessions. The previous works have been modeling the session as a variable-length of a sequence of items and learning the representation of both individual items and the aggregated session. Recent research has applied graph neural networks with an attention mechanism to capture complicated item transitions and dependencies by modeling the sessions into graph-structured data. However, they still face fundamental challenges in terms of data and learning methodology such as sparse supervision signals and noisy interactions in sessions, leading to sub-optimal performance. In this paper, we propose SR-GCL, a novel contrastive learning framework for a session-based recommendation. As a crucial component of contrastive learning, we propose two global context enhanced data augmentation methods while maintaining the semantics of the original session. The extensive experiment results on two real-world E-commerce datasets demonstrate the superiority of SR-GCL as compared to other state-of-the-art methods.Comment: 11 pages. This paper has been accepted by DLG-AAAI'2

    Spatio-Temporal Contrastive Learning Enhanced GNNs for Session-based Recommendation

    Full text link
    Session-based recommendation (SBR) systems aim to utilize the user's short-term behavior sequence to predict the next item without the detailed user profile. Most recent works try to model the user preference by treating the sessions as between-item transition graphs and utilize various graph neural networks (GNNs) to encode the representations of pair-wise relations among items and their neighbors. Some of the existing GNN-based models mainly focus on aggregating information from the view of spatial graph structure, which ignores the temporal relations within neighbors of an item during message passing and the information loss results in a sub-optimal problem. Other works embrace this challenge by incorporating additional temporal information but lack sufficient interaction between the spatial and temporal patterns. To address this issue, inspired by the uniformity and alignment properties of contrastive learning techniques, we propose a novel framework called Session-based Recommendation with Spatio-Temporal Contrastive Learning Enhanced GNNs (RESTC). The idea is to supplement the GNN-based main supervised recommendation task with the temporal representation via an auxiliary cross-view contrastive learning mechanism. Furthermore, a novel global collaborative filtering graph (CFG) embedding is leveraged to enhance the spatial view in the main task. Extensive experiments demonstrate the significant performance of RESTC compared with the state-of-the-art baselines e.g., with an improvement as much as 27.08% gain on HR@20 and 20.10% gain on [email protected]: Under reviewing draft of ACM TOI
    • …
    corecore