4,646 research outputs found

    An approach to high speed ship ride quality simulation

    Get PDF
    The high speeds attained by certain advanced surface ships result in a spectrum of motion which is higher in frequency than that of conventional ships. This fact along with the inclusion of advanced ride control features in the design of these ships resulted in an increased awareness of the need for ride criteria. Such criteria can be developed using data from actual ship operations in varied sea states or from clinical laboratory experiments. A third approach is to simulate ship conditions using measured or calculated ship motion data. Recent simulations have used data derived from a math model of Surface Effect Ship (SES) motion. The model in turn is based on equations of motion which have been refined with data from scale models and SES of up to 101 600-kg (100-ton) displacement. Employment of broad band motion emphasizes the use of the simulators as a design tool to evaluate a given ship configuration in several operational situations and also serves to provide data as to the overall effect of a given motion on crew performance and physiological status

    Control design for energy saving

    Get PDF
    International audienceThis paper presents the interest of including control strategy into electropneumatic design. For this certain experimental results obtained in an electropneumatic process have been presented. Using two servo-distributors leads to a system with one degree of freedom. This opportunity is exploited for in two objectives. The first concerns positioning control and the second attempts to optimise energy efficiency. With this aim an energy optimisation algorithm has been presented. The chosen control algorithm issues from the flatness concept. KEY WORDS nonlinear control, flatness, energy saving, electropneumatic

    Design of a compliant positioning control using an inverse method

    Get PDF
    International audienceThe design of new system requires generally achieving different objectives. The choice of the right system and control architecture is crucial and they can be judiciously exploited. The proposed approach is dealing with the efficient use of a pneumatic cylinder controlled by two servovalves. The control objectives are independent position and stiffness tracking. A Bond graph approach gives, in a first step, a general methodology to check the accessibility of the specifications on energetic and dynamic criteria. Then a control algorithm issued from the flatness concept and the nonlinear control theory is developed. Simulation and experimental results illustrating the proposed principle are finally presented. Concerning the tracking performance, it is shown that the new strategy does not decrease tracking errors, or the static errors, or the standard deviation in term of position and velocity tracking. The performance of the stiffness control is finally illustrated in simulation

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    A case study of technology transfer: Rehabilitative engineering at Rancho Los Amigos Hospital

    Get PDF
    The transfer of NASA technolgy to rehabilitative applications of artificial limbs is studied. Human factors engineering activities range from orthotic manipulators to tiny dc motors and transducers to detect and transmit voluntary control signals. It is found that bicarbon implant devices are suitable for medical equipment and artificial limbs because of their biological compatibility with human body fluids and tissues

    Signal noise in pure fluid amplifiers research report no. 1

    Get PDF
    Signal noise in pure fluid amplifiers, signal function generator, fluid transmission lines, closed loop control, and related instrumentation and equipmen

    Modelling of servo-controlled pneumatic drives: a generalised approach to pneumatic modelling and applications in servo-drive design

    Get PDF
    The primary objective of this research is to develop a general modelling facility for modular pneumatic servo-drives. The component-oriented approach has been adopted as the modelling technique to provide the flexibility of modelling a wide variety of components and the segmentation of the non-linear system to less complex uncoupled component modules. A significant part of the research work has been devoted to identify a series of component modules of the single axis linear pneumatic servomechanism with standardised linking variables. The mathematical models have been implemented in a simulation software which produces time domain responses for design evaluation purposes. Alternative components for different servomechanism design were modelled as mutually exclusive modules which could be selected for assembly as if they were real physical entities. The philosophy of the approach was validated by tests on prototype servo-drives with matching components. Design analysis could be performed by simulating and comparing the performance of alternative system structures. [Continues.
    corecore