382 research outputs found

    On the Enhancement of Remote GPU Virtualization in High Performance Clusters

    Full text link
    Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share one or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this dissertation we enhance one framework offering remote GPU virtualization capabilities, referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, performance, and support for new GPU features, which prevented its used in production environments. These issues motivated this thesis, in which all the research is primarily conducted with the aim of turning rCUDA into a production-ready solution for eventually transferring it to industry. The new version of rCUDA resulting from this work presents a reduction of up to 35% in execution time of the applications analyzed with respect to the initial version. Compared to the use of local GPUs, the overhead of this new version of rCUDA is below 5% for the applications studied when using the latest high-performance computing networks available.Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas, como el aumento de los costos de adquisición, así como mayores requerimientos de espacio. Asimismo, también requieren un suministro de energía más potente. Además, las GPUs consumen una cierta cantidad de energía aún estando inactivas, y su utilización suele ser baja para la mayoría de las cargas de trabajo. De manera similar a las máquinas virtuales, el uso de GPUs virtuales podría hacer frente a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo así el impacto negativo de las desventajas anteriormente mencionadas. De igual forma, este mecanismo también permite reducir la cantidad total de GPUs instaladas en el clúster. En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funcionalidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones. Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas características de las GPUs, lo cual impedía su uso en entornos de producción. Estas consideraciones motivaron la presente tesis, en la que toda la investigación llevada a cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso entornos de producción, con la finalidad de transferirla eventualmente a la industria. La nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el 35% en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva versión de rCUDA es inferior al 5% para las aplicaciones estudiadas cuando se utilizan las últimas redes de computación de altas prestaciones disponibles.Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent utilitzades en moltes instal·lacions de computació donada la seva extraordinària capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges, com l'augment dels costos d'adquisició, així com major requeriment d'espai. Així mateix, també requereixen un subministrament d'energia més potent. A més, les GPUs consumeixen una certa quantitat d'energia encara estant inactives, i la seua utilització sol ser baixa per a la majoria de les càrregues de treball. D'una manera semblant a les màquines virtuals, l'ús de GPUs virtuals podria fer front als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota de GPUs permet que una aplicació que s'executa en un node d'un clúster utilitze de forma transparent les GPUs instal·lades en altres nodes d'aquest clúster. A més, aquesta tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s'executen en el mateix. D'aquesta manera, diverses aplicacions que s'executen en diferents nodes de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint així l'impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster. En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix funcionalitats de virtualització remota de GPUs per al seu ús en clústers d'altes prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i el suport per a noves característiques de les GPUs, la qual cosa impedia el seu ús en entorns de producció. Aquestes consideracions van motivar la present tesi, en què tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la eventualment a la indústria. La nova versió de rCUDA resultant d'aquest treball presenta una reducció de fins al 35% en el temps d'execució de les aplicacions analitzades respecte a la versió inicial. En comparació amb l'ús de GPUs locals, la sobrecàrrega d'aquesta nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s'utilitzen les últimes xarxes de computació d'altes prestacions disponibles.Reaño González, C. (2017). On the Enhancement of Remote GPU Virtualization in High Performance Clusters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86219TESISPremios Extraordinarios de tesis doctorale

    Cooperative scheduling and load balancing techniques in fog and edge computing

    Get PDF
    Fog and Edge Computing are two models that reached maturity in the last decade. Today, they are two solid concepts and plenty of literature tried to develop them. Also corroborated by the development of technologies, like for example 5G, they can now be considered de facto standards when building low and ultra-low latency applications, privacy-oriented solutions, industry 4.0 and smart city infrastructures. The common trait of Fog and Edge computing environments regards their inherent distributed and heterogeneous nature where the multiple (Fog or Edge) nodes are able to interact with each other with the essential purpose of pre-processing data gathered by the uncountable number of sensors to which they are connected to, even by running significant ML models and relying upon specific processors (TPU). However, nodes are often placed in a geographic domain, like a smart city, and the dynamic of the traffic during the day may cause some nodes to be overwhelmed by requests while others instead may become completely idle. To achieve the optimal usage of the system and also to guarantee the best possible QoS across all the users connected to the Fog or Edge nodes, the need to design load balancing and scheduling algorithms arises. In particular, a reasonable solution is to enable nodes to cooperate. This capability represents the main objective of this thesis, which is the design of fully distributed algorithms and solutions whose purpose is the one of balancing the load across all the nodes, also by following, if possible, QoS requirements in terms of latency or imposing constraints in terms of power consumption when the nodes are powered by green energy sources. Unfortunately, when a central orchestrator is missing, a crucial element which makes the design of such algorithms difficult is that nodes need to know the state of the others in order to make the best possible scheduling decision. However, it is not possible to retrieve the state without introducing further latency during the service of the request. Furthermore, the retrieved information about the state is always old, and as a consequence, the decision is always relying on imprecise data. In this thesis, the problem is circumvented in two main ways. The first one considers randomised algorithms which avoid probing all of the neighbour nodes in favour of at maximum two nodes picked at random. This is proven to bring an exponential improvement in performance with respect to the probe of a single node. The second approach, instead, considers Reinforcement Learning as a technique for inferring the state of the other nodes thanks to the reward received by the agents when requests are forwarded. Moreover, the thesis will also focus on the energy aspect of the Edge devices. In particular, will be analysed a scenario of Green Edge Computing, where devices are powered only by Photovoltaic Panels and a scenario of mobile offloading targeting ML image inference applications. Lastly, a final glance will be given at a series of infrastructural studies, which will give the foundations for implementing the proposed algorithms on real devices, in particular, Single Board Computers (SBCs). There will be presented a structural scheme of a testbed of Raspberry Pi boards, and a fully-fledged framework called ``P2PFaaS'' which allows the implementation of load balancing and scheduling algorithms based on the Function-as-a-Service (FaaS) paradigm

    Paving the Path for Heterogeneous Memory Adoption in Production Systems

    Full text link
    Systems from smartphones to data-centers to supercomputers are increasingly heterogeneous, comprising various memory technologies and core types. Heterogeneous memory systems provide an opportunity to suitably match varying memory access pat- terns in applications, reducing CPU time thus increasing performance per dollar resulting in aggregate savings of millions of dollars in large-scale systems. However, with increased provisioning of main memory capacity per machine and differences in memory characteristics (for example, bandwidth, latency, cost, and density), memory management in such heterogeneous memory systems poses multi-fold challenges on system programmability and design. In this thesis, we tackle memory management of two heterogeneous memory systems: (a) CPU-GPU systems with a unified virtual address space, and (b) Cloud computing platforms that can deploy cheaper but slower memory technologies alongside DRAMs to reduce cost of memory in data-centers. First, we show that operating systems do not have sufficient information to optimally manage pages in bandwidth-asymmetric systems and thus fail to maximize bandwidth to massively-threaded GPU applications sacrificing GPU throughput. We present BW-AWARE placement/migration policies to support OS to make optimal data management decisions. Second, we present a CPU-GPU cache coherence design where CPU and GPU need not implement same cache coherence protocol but provide cache-coherent memory interface to the programmer. Our proposal is first practical approach to provide a unified, coherent CPU–GPU address space without requiring hardware cache coherence, with a potential to enable an explosion in algorithms that leverage tightly coupled CPU–GPU coordination. Finally, to reduce the cost of memory in cloud platforms where the trend has been to map datasets in memory, we make a case for a two-tiered memory system where cheaper (per bit) memories, such as Intel/Microns 3D XPoint, will be deployed alongside DRAM. We present Thermostat, an application-transparent huge-page-aware software mechanism to place pages in a dual-technology hybrid memory system while achieving both the cost advantages of two-tiered memory and performance advantages of transparent huge pages. With Thermostat’s capability to control the application slowdown on a per application basis, cloud providers can realize cost savings from upcoming cheaper memory technologies by shifting infrequently accessed cold data to slow memory, while satisfying throughput demand of the customers.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137052/1/nehaag_1.pd

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    Single system image: A survey

    Get PDF
    Single system image is a computing paradigm where a number of distributed computing resources are aggregated and presented via an interface that maintains the illusion of interaction with a single system. This approach encompasses decades of research using a broad variety of techniques at varying levels of abstraction, from custom hardware and distributed hypervisors to specialized operating system kernels and user-level tools. Existing classification schemes for SSI technologies are reviewed, and an updated classification scheme is proposed. A survey of implementation techniques is provided along with relevant examples. Notable deployments are examined and insights gained from hands-on experience are summarized. Issues affecting the adoption of kernel-level SSI are identified and discussed in the context of technology adoption literature

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Virtualisation and Thin Client : A Survey of Virtual Desktop environments

    Get PDF
    This survey examines some of the leading commercial Virtualisation and Thin Client technologies. Reference is made to a number of academic research sources and to prominent industry specialists and commentators. A basic virtualisation Laboratory model is assembled to demonstrate fundamental Thin Client operations and to clarify potential problem areas

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Artificial Intelligence Technology

    Get PDF
    This open access book aims to give our readers a basic outline of today’s research and technology developments on artificial intelligence (AI), help them to have a general understanding of this trend, and familiarize them with the current research hotspots, as well as part of the fundamental and common theories and methodologies that are widely accepted in AI research and application. This book is written in comprehensible and plain language, featuring clearly explained theories and concepts and extensive analysis and examples. Some of the traditional findings are skipped in narration on the premise of a relatively comprehensive introduction to the evolution of artificial intelligence technology. The book provides a detailed elaboration of the basic concepts of AI, machine learning, as well as other relevant topics, including deep learning, deep learning framework, Huawei MindSpore AI development framework, Huawei Atlas computing platform, Huawei AI open platform for smart terminals, and Huawei CLOUD Enterprise Intelligence application platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence
    corecore