276 research outputs found

    Target Network Selection Algorithm based on Required Dwell Time Estimation

    Get PDF
    In wireless communication of fourth generation the expectation to integrate a diverse heterogeneous wireless network leads to a worldwide seamless mobility. For seamless mobility in heterogenous wireless networks, selection of best target network from available network is primary goal for handovers. To achieve this goal, we devise a target network selection algorithm to enhance the user satisfaction level.The method relies on a dwell time and prediction of received signal strength. By observing the Predicted received signal strength for a specified dwell time duration, a mobile node is able to decide whether to tigger the handoff process or not. Once the handoff process is triggered. Target network is selected depending upon a cost function. The Simulated results shows that, the proposed algorithm improves the handover performance by measuring the received signal strength accurately. It also selects the optimum target network quantitatively. Therefore, results obtained through our proposed algorithm are more accurate as compared to existing handover algorithms

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    A survey of network coverage prediction mechanisms in 4G heterogeneous wireless networks.

    Get PDF
    Seamless connectivity in 4G wireless networks requires the development of intelligent proactive mechanisms for efficiently predicting vertical handovers. Random device mobility patterns further increase the complexity of the handover process. Geographical topologies such as indoor and outdoor environments also exert additional constraints on network coverage and device mobility. The ability of a device to acquire refined knowledge about surrounding network coverage can significantly affect the performance of vertical handover prediction and QoS management mechanisms. This paper presents a comprehensive survey of research work conducted in the area of 4G wireless network coverage prediction for the optimisation of vertical handovers. It discusses different coverage prediction approaches and analyses their ability to accurately predict network coverage

    Support infrastructures for multimedia services with guaranteed continuity and QoS

    Get PDF
    Advances in wireless networking and content delivery systems are enabling new challenging provisioning scenarios where a growing number of users access multimedia services, e.g., audio/video streaming, while moving among different points of attachment to the Internet, possibly with different connectivity technologies, e.g., Wi-Fi, Bluetooth, and cellular 3G. That calls for novel middlewares capable of dynamically personalizing service provisioning to the characteristics of client environments, in particular to discontinuities in wireless resource availability due to handoffs. This dissertation proposes a novel middleware solution, called MUM, that performs effective and context-aware handoff management to transparently avoid service interruptions during both horizontal and vertical handoffs. To achieve the goal, MUM exploits the full visibility of wireless connections available in client localities and their handoff implementations (handoff awareness), of service quality requirements and handoff-related quality degradations (QoS awareness), and of network topology and resources available in current/future localities (location awareness). The design and implementation of the all main MUM components along with extensive on the field trials of the realized middleware architecture confirmed the validity of the proposed full context-aware handoff management approach. In particular, the reported experimental results demonstrate that MUM can effectively maintain service continuity for a wide range of different multimedia services by exploiting handoff prediction mechanisms, adaptive buffering and pre-fetching techniques, and proactive re-addressing/re-binding

    Proactive policy management using TBVH mechanism in heterogeneous networks.

    Get PDF
    In order to achieve seamless interoperability in heterogeneous networking, it is vital to improve the context-awareness of the mobile node (MN) so that it is able to predict future network conditions with sufficient accuracy. In this paper, we introduce a predictive mathematical model for calculating the estimated Time Before Vertical Handover (TBVH) component from available network parameters. The model is practically implemented in OPNET and our simulation results confirm the validity of the concept. We then demonstrate how the knowledge of TBVH along with other network parameters can be applied by downward Quality of Service management policies which bundle multi-class traffic streams on to available network channels based on application QoS, device mobility patterns and prevailing channel conditions

    Vertical Handover Decision Algorithm in Heterogeneous Wireless Networks

    Full text link
    [EN] With the recent progress in the area of cellular communication the issue of inter cells handover without dropping an ongoing connection with the base station has arisen. In this paper, the focus is on the performance of vertical handover. Various proposed interconnection architectures for vertical handover in heterogeneous networks were studied. Two different algorithms to make the decision on when and to which network perform a handover were considered. In the first of them the decision is based on the received signal strength (RSS). In the second one a fuzzy logic system that uses RSS, bandwidth, battery power and packet loss as the input parameters is proposed. The simulation results show that the algorithm based on fuzzy logic leads to a reduction of the number of handovers and a minimisation of the power consumption as compared to the first algorithm used here and the existing algorithms.This work was supported by the Spanish Ministry of Economy and Competitiveness through Grants TIN2013-47272-C2-1-R and BES-2011-045551.Benaatou, W.; Latif, A.; Pla, V. (2017). Vertical Handover Decision Algorithm in Heterogeneous Wireless Networks. International Journal of Internet Protocol Technology (Online). 10(4):197-213. https://doi.org/10.1504/IJIPT.2017.08891419721310

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore