29,638 research outputs found

    Service-Oriented Computing for intelligent train maintenance

    Get PDF
    The purpose of this work is to apply the servicization of enterprise information systems in maintenance, particularly in the management of the maintenance process of the component parts of trains. Service Oriented Architecture (SOA) is an architectural approach that permits servicization since it provides a flexible set of design principles used during the modeling practices (abstraction and realization). With a view to supporting the model-driven engineering of software systems, Mode Driven Architecture (MDA) is a design approach delivering a set of guidelines for the configuring of specifications in systems development. Therefore, the combination of these two approaches can be fruitful to address the challenging issues the enterprise information system is facing today. Our study is based on a methodological approach using the MDA models for the automatic generation of web service. The case study concerns a Railways Maintenance Workshop (RMW) at Sidi Bel Abbes (Algeria). Finally, the information system for the management of maintenance of the component parts of passengers and baggage railcars, using the generated solution, is realized and deployed. This software helps to have better management of the RMW by the effective planning of interventions, improve performance by increasing reliability, traceability, and availability of the equipment (parts)

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Digital Railway System

    Get PDF

    Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration

    Get PDF
    There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems ‘expose’ relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT)
    corecore