30,372 research outputs found

    Content-driven design and architecture of E-learning applications

    Get PDF
    E-learning applications combine content with learning technology systems to support the creation of content and its delivery to the learner. In the future, we can expect the distinction between learning content and its supporting infrastructure to become blurred. Content objects will interact with infrastructure services as independent objects. Our solution to the development of e-learning applications – content-driven design and architecture – is based on content-centric ontological modelling and development of architectures. Knowledge and modelling will play an important role in the development of content and architectures. Our approach integrates content with interaction (in technical and educational terms) and services (the principle organization for a system architecture), based on techniques from different fields, including software engineering, learning design, and knowledge engineering

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Implementation and design of a service-based framework to integrate personal and institutional learning environments

    Get PDF
    The landscape of teaching and learning has changed in recent years because of the application of Information and Communications technology. Among the most representative innovations in this regard are Learning Management Systems. Despite of their popularity in institutional contexts and the wide set of tools and services that they provide to learners and teachers, they present several issues. Learning Management Systems are linked to an institution and a period of time, and are not adapted to learners' needs. In order to address these problems Personal Learning Environments are defined, but it is clear that these will not replace Learning Management Systems and other institutional contexts. Both types of environment should therefore coexist and interact. This paper presents a service-based framework to facilitate such interoperability. It supports the export of functionalities from the institutional to the personal environment and also the integration within the institution of learning outcomes from personal activities. In order to achieve this in a flexible, extensible and open way, web services and interoperability specifications are used. In addition some interoperability scenarios are posed. The framework has been tested in real learning contexts and the results show that interoperability is possible, and that it benefits learners, teachers and institutions.Peer ReviewedPostprint (author's final draft

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    A case study for measuring informal learning in PLEs

    Get PDF
    The technological support for learning and teaching processes is constantly changing. Information and Communication Technologies (ICT) applied to education, cause changes that affect the way in which people learn. This application introduces new software systems and solutions to carry out teaching and learning activities. Connected to ICT application, the emergence of Web 2.0 and its use in learning contexts enables an online implementation of the student-centred learning paradigm. In addition, 2.0 trends provide “new” ways to exchange, making easier for informal learning to become patent. Given this context, open and user-centered learning environments are needed to integrate such kinds of tools and trends and are commonly described as Personal Learning Environments. Such environments coexist with the institutional learning management systems and they should interact and exchange information between them. This interaction would allow the assessment of what happens in the personal environment from the institutional side. This article describes a solution to make the interoperability possible between these systems. It is based on a set of interoperability scenarios and some components and communication channels. In order to test the solution it is implemented as a proof of concept and the scenarios are validated through several pilot experiences. In this article one of such scenarios and its evaluation experiment is described to conclude that functionalities from the institutional environments and the personal ones can be combined and it is possible to assess what happens in the activities based on them.Peer ReviewedPostprint (published version
    • 

    corecore