3,473 research outputs found

    Staffing and Scheduling to Differentiate Service in Many-Server Service Systems

    Get PDF
    This dissertation contributes to the study of a queueing system with a single pool of multiple homogeneous servers to which multiple classes of customers arrive in independent streams. The objective is to devise appropriate staffing and scheduling policies to achieve specified class-dependent service levels expressed in terms of tail probability of delays. Here staffing and scheduling are concerned with specifying a time-varying number of servers and assigning newly idle servers to a waiting customer from one of K classes, respectively. For this purpose, we propose new staffing-and-scheduling solutions under the critically-loaded and overloaded regimes. In both cases, the proposed solutions are both time dependent (coping with the time variability in the arrival pattern) and state dependent (capturing the stochastic variability in service and arrival times). We prove heavy-traffic limit theorems to substantiate the effectiveness of our proposed staffing and scheduling policies. We also conduct computer simulation experiments to provide engineering confirmation and practical insight

    Creation of value with open source software in the telecommunications field

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    An adaptive priority policy for radiotherapy scheduling

    Get PDF
    In radiotherapy, treatment needs to be delivered in time. Long waiting times can result in patient anxiety and growth of tumors. They are often caused by inefficient use of radiotherapy equipment, the linear accelerators (LINACs). However, making an efficient schedule is very challenging, especially when we have multiple types of patients, having different service requirements and waiting time constraints. Moreover, in radiotherapy a patient needs to go through a LINAC multiple times over multiple days, to complete the treatment. In this paper we model the radiotherapy treatment process as a queueing system with multiple queues, and we propose a new class of scheduling policies that are simple, flexible and fair to patients. Numerical experiments show that our new policy outperforms the commonly used policies. We also extend the policy to an adaptive one to deal with unknown and fluctuating arrival rates. Our adaptive policy turns out to be quite efficient in absorbing the effects caused by these changes. Due to the complexity of our problem, we select the parameters of the policies through simulation-based optimization heuristics. Our work may also have important implications for managers in other service systems such as call centers
    • …
    corecore